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A. Full Results on the DSEC Test Sequences
We provide a full report of our accuracy evaluation re-

sults on the DSEC benchmark in Tab. 1. In addition, a com-
plete overview of the sharpness results in terms of flow warp
loss (FWL) scores on the DSEC test set are shown in Tab. 2.
At the time of this writing, Liu et al. [5] had the best-known
supervised learning (SL) method on the DSEC-Flow bench-
mark in terms of accuracy. However, Liu et al. [5] did not
report their FWL scores. Conversely, Gehrig et al. [3] had
the best-known SL method in terms of FWL scores.

Tab. 1 provides a summary of the accuracy compar-
isons against these SL techniques as well as the best-known
model-based (MB) methods. Similarly, Tab. 2 summa-
rizes the comparisons of the FWL scores (sharpness). We
note that no MB method, including ours, produces accuracy
scores comparable to state-of-the-art SL approaches on the
DSEC test set. Nonetheless, when compared to other state-
of-the-art MB methods our approach provides comparable
average endpoint error (AEE) and percentage 3-pixel error
(%3PE). Additionally, our percentage 1-pixel error (%1PE)
scores are consistently better than other MB methods. Inter-
estingly, for zurich city 12 a (noisy), [1] performed
better than others due to its event denoising component.

All interlaken 00 b interlaken 01 a thun 01 a

AEE ↓ %1PE ↓ %3PE ↓ AEE ↓ %1PE ↓ %3PE ↓ AEE ↓ %1PE ↓ %3PE ↓ AEE ↓ %1PE ↓ %3PE ↓

SL

TMA [5] 0.743 10.863 2.301 1.385 18.12 5.785 0.809 12.894 3.108 0.616 8.844 1.605

E-RAFT [3] 0.788 12.742 2.684 1.394 20.415 6.189 0.899 15.483 3.907 0.654 10.954 1.87

M
B

Brebion et al. [1] 4.881 82.812 41.952 8.588 90.12 59.841 5.94 86.63 47.33 3.01 71.663 29.697

Shiba et al. [7] 3.472 76.57 30.855 5.74 78.086 38.925 3.74 75.402 31.366 2.12 64.73 17.684

Ours (EINCM) 5.003 68.668 35.872 6.396 72.63 43.6 5.482 70.008 41.328 2.015 51.832 16.174

thun 01 b zurich city 12 a zurich city 14 c zurich city 15 a

AEE ↓ %1PE ↓ %3PE ↓ AEE ↓ %1PE ↓ %3PE ↓ AEE ↓ %1PE ↓ %3PE ↓ AEE ↓ %1PE ↓ %3PE ↓

SL

TMA [5] 0.552 7.449 1.31 0.572 9.6 8.66 0.657 14.107 1.99 0.554 6.954 1.079

E-RAFT [3] 0.577 8.322 1.52 0.612 11.24 1.057 0.713 15.5 1.913 0.589 8.748 1.303

M
B

Brebion et al. [1] 3.913 77.567 34.69 3.139 80.277 34.078 3.998 88.304 45.67 3.781 81.353 37.987

Shiba et al. [7] 2.48 73.632 23.564 3.86 86.398 43.961 2.72 76.851 30.53 2.35 72.864 20.987

Ours (EINCM) 2.778 63.633 26.56 8.37 79.597 45.786 3.153 64.687 30.879 3.005 62.199 26.633

Table 1. DSEC test set accuracy results. Bold and underline
typefaces indicate the best among supervised learning and model-
based methods, respectively.

∗ Indicates equal contribution.

All int 00 b int 01 a thu 01 a thu 01 b zur 12 a zur 14 c zur 15 a

FWL ↑ FWL ↑ FWL ↑ FWL ↑ FWL ↑ FWL ↑ FWL ↑ FWL ↑

SL E-RAFT [3] 1.29 1.32 1.42 1.20 1.18 1.12 1.47 1.34

M
B Shiba et al. [7] 1.36 1.50 1.51 1.24 1.24 1.14 1.50 1.41

Ours (EINCM) 1.615 1.94 1.868 1.40 1.396 1.289 1.605 1.603

Table 2. DSEC test set sharpness results (FWL scores). Bold type-
face is used to indicate the best.

B. Additional Sharpness Results on MVSEC
For the dt = 1 setting on MVSEC, each data sample

contains very few events (≈ 6.5 K, 9.4 K, 7.8 K, and 8.7
K on average in indoor flying1, indoor flying2,
indoor flying3, and outdoor day1, respectively).
In this scenario, MultiCM [7] reported (sharpness) FWL
scores of ≈1 for each sequence. We report further com-
parisons for the MVSEC dt = 1 case with exact FWL
scores in Tab. 3. The FWL scores of MultiCM were ob-
tained using the open-source code provided by the authors.
We observe that although small, the FWL scores for both
indoor and outdoor sequences were all > 1 and better than
MultiCM. We also note that the average FWL score for
indoor flying2 is higher than other sequences, which
can be correlated with it comprising a larger average num-
ber of events.

MVSEC (dt=1)

indoor flying1 indoor flying2 indoor flying3 outdoor day1

Ground truth 1.026 0.986 1.006 0.996

Shiba et al. [7] 1.019 0.968 0.989 0.985

Ours (EINCM) 1.034 1.161 1.038 1.003

Table 3. Flow warp loss (FWL) for MVSEC sequences with dt =
1 on grayscale frames. Bold typeface indicates the best.

C. MVSEC Outdoor Evaluations
The MVSEC outdoor sequence outdoor day1 con-

sists of 11,440 image frames. Yet, optical flow is only
evaluated on a small subset of this sequence. To com-
pare their results with UnFlow [6], Zhu et al. [8] eval-



uated on 800 frames from outdoor day1 spanning a
time window from 222.4 s to 240.4 s. These start and
end times, interpreted as image timestamps, correspond to
1, 506, 118, 124.7330644 s and 1, 506, 118, 142.7177844 s,
respectively. Equivalently, interpreted as image indices,
they correspond to the 10,138th and the 10,958th (with
starting index 0), respectively. Following Zhu et al.
[8], other works that benchmarked their evaluations on
outdoor day1 fall short on consistently reporting and/or
using the same evaluation points. To the authors’ knowl-
edge, there are at least two sets of evaluation points for the
MVSEC outdoor day1 sequence in the literature.

C.1. Discrepancies

We summarize discrepancies in prior works as follows.

• Although Zhu et al. [8] reported a usage of 800 frames,
the provided timestamps indicate 820 frames instead.
On the other hand, their publicly available code and
assets suggest the use of exactly 800 frames.

• Lee et al. [4] and Ding et al. [2] used two sets of 401
frames, one between the image indices [9200, 9600]
and the other between [10500, 10900].

• Shiba et al. [7] mentioned using the same 800 frames
as [8]. However, the reported results were not reason-
ably reproducible on our local machine. Therefore, in
Tab. 1 of the main paper, the accuracy scores for [7]
were obtained by running their code locally on the 800
frames as suggested by [8]. This corresponds to image
indices 10,148 to 10,948.

Our evaluations on MVSEC outdoor day1 were per-
formed on the 800 frames corresponding to the image in-
dices [10148, 10948] (starting at 0).

D. Edge Smoothing Sensitivity Analysis

(a) Original (b) k = 1 (c) k = 5 (d) IEDT

Figure 1. Edge smoothing operations.

In Tab. 4, we present a sensitivity analysis on the choice
of edge smoothing methods. Observe that we obtained the
best performance by using a Gaussian kernel size of k = 1
(Fig. 1). Increasing the kernel size to k = 5 resulted in en-
larging the reach of an edgel (edge pixel) to non-edge pixel
regions. Yet, it also simultaneously increased the softness
of the edgels, which resulted in performance degradation.
The inverse exponential distance transform (IEDT) [1] can

smooth edges in a manner where the reach of edgels can
be extended to the non-edge pixel regions without softening
the edgel itself. Edges smoothed using the IEDT yielded
better performance when compared to Gaussian blurring
with k = 5. Note that the IWEs for all three settings were
consistently obtained using k = 1. Nevertheless, the IEDT
is computationally expensive (Tab. 5). Consequently, we
used a Gaussian blur with k = 1 for edge smoothing.

outdoor day1 (dt = 4)

k = 1 k = 5 IEDT

AEE ↓ 1.704 1.767 1.736

%3PE ↓ 16.013 16.93 16.719

FWL ↑ 1.23 1.206 1.211

Table 4. Edge smoothing sensitivity analysis results. We re-
port the accuracy and sharpness scores on the MVSEC sequence
outdoor day1 (dt = 4). The first two columns depict a Gaus-
sian blur with kernel size k = 1 and k = 5. The third col-
umn shows results using the inverse exponential distance trans-
form (IEDT).

E. Hyperparameters
As discussed in the main paper, all the experiments used

five pyramid levels to take advantage of multiscaling. With
regards to multiple references for MVSEC dt = 1, refer-
ence times t0, tmid, and t1 were used to compute contrasts,
while the image timestamps T (i) were utilized to compute
correlations. In the MVSEC dt = 4 case, there were three
images within the duration of each data sample. Therefore,
the image timestamps T (i) were used as reference times to
compute both contrasts and correlations. For the ECD se-
quence slider depth, dt = 2 was chosen (with on av-
erage ≈ 24 K events per data sample) for the evaluations.
Each data sample consisted of three images: two at the
boundaries and one in between. Contrasts and correlations
were calculated at the three image timestamps T (i). Simi-
larly, in the DSEC sequences each data sample consisted of
three images and the timestamps T (i) served as reference
times for computing both contrasts and correlations.

The accuracy and FWL scores were evaluated for each
sequence using the corresponding events within a data sam-
ple. However, for optimization we ensured a fixed number
of events per data sample D(i). Specifically, we used 30 K
and 40 K events for the indoor and outdoor sequences from
MVSEC, respectively. For DSEC and ECD, we used 1.5 M
and 30 K events, respectively. For the MVSEC sequences,
we set α = 20, β = 35, for ECD we used α = 60, β = 60,
and for DSEC α = 2000, β = 4000 were used.

Extracting image edges via OpenCV’s Canny1 involves
using a pair of threshold values (thresh 1,thresh 2).

1https://docs.opencv.org/4.x/da/d22/tutorial py canny.html



We used (100, 200) and (30, 80) for the MVSEC indoor and
outdoor sequences, respectively. For ECD, (100, 200) was
used. Finally, for DSEC (30, 80) was used for all sequences
except for zurich city 12 a (night-time images with
extremely noisy events), where the thresholds (10, 60) were
used. The coefficient γ for the regularizer term in our ob-
jective function was fixed to 0.0025 for the MVSEC se-
quences, while it was set to 0.0 for both the ECD and DSEC
sequences.

F. EINCM Multiscale Pseudocode

In Alg. 1, we present the high-level pseudocode of the
multiscaling scheme used by our method. The i-th input
data sample D(i) consists of the corresponding events E(i),
edge images I(i), and image timestamps T (i). The outer
loop (lines 5-19) reflects the fact that we used five scales
in the multiscale scheme. The number of scales as well as
the resolution of the motion parameters at each scale are
preset and can be adjusted. The main contrast and corre-
lation maximization (CCM, line 6), where we optimize for
the motion parameters, requires a loss function and an ini-
tial lΘi (i.e., the first argument). To solve for handovers
(line 12), we essentially solve for the coefficient who. This
coefficient linearly combines the optimized parameters at
the current index and scale (result of line 6), and the down-
sampled optimized parameters from the previous index at
the current scale (result of line 7). We optimize for who in
the same manner as the main CCM optimization where we
replace lΘi by the aforementioned weighted sum.

Algorithm 1: EINCM Multiscale Pseudocode

Data: E(i), I(i), T (i), and optionally Θ∗
0 i−1

Hyperparameters: a
Result: Θ∗

0 i

1 if Θ∗
0 i−1 is available then

2 Θ0
4 i ← downscale( Θ∗

0 i−1)
3 else
4 Θ0

4 i ← zero
5 for lvl = 4 to 0 do
6 Θ∗

lvl i ← argmax Θlvl i
loss( Θ0

lvl i ; E(i), I(i), T (i))

7 Θ↓
lvl i−1 ← downscale( Θ∗

0 i−1)

8 who ← 0
9 if handover flaglvl then

10 if solve flaglvl then
11 w0

ho ← 0.5
12 w∗

ho ←
argmaxwho

losswho(w
0
ho; Θ∗

lvl i , Θ↓
lvl i−1, E(i), I(i), T (i))

13 who ← w∗
ho

14 else
15 who ← a

16 Θ∗
lvl i ← who · Θ↓

lvl i−1 + (1− who) · Θ∗
lvl i

17 if lvl ̸= 0 then
18 Θ0

lvl−1 i ← upscale( Θ∗
lvl i )

19 end for
20 return Θ∗

0 i

G. Runtime Analysis
In Tab. 5, we present a detailed runtime report of our im-

age preprocessing as well as the optimization (including and
excluding the first jit2 compilation) pipeline on the same
machine and software suite described in the main paper.

ECD (176× 240) MVSEC (260× 346) DSEC (480× 640)

Preprocessing 17.4ms ± 588µs 33.7ms ± 1.81µs 68.7ms ± 3.59µs
Edge extraction 146µs ± 27.7µs 162µs ± 18.62µs 351µs ± 46.1µs
Gaussian blur 195µs ± 13.9µs 395µs ± 29.6µs 1.6ms ± 172µs
Inverse exponential distance transform 755ms ± 28.8ms 1.56 s ± 21.6ms 5.36 s ± 86.3ms
CCM at pyramid level 0 (include first jit compilation) 356ms ± 1.02 s 465.59ms ± 1.354 s 2.35 s ± 3.65 s
CCM at pyramid level 0 (exclude first jit compilation) 15.96ms ± 846.4µs 32.44ms ± 188.3µs 1.128 s ± 280.3µs
Downscale from pyramid level 4 to 0 96.4ms ± 62.9ms 96.4ms ± 62.9ms 96.4ms ± 62.9ms
Upscale to sensor size 47.8ms ± 39.5ms 99.3ms ± 33.2ms 122ms ± 14.3ms

Table 5. The runtime details of the edge extraction pipeline (Fig. 2
in the main paper). This includes the following: (i) preprocessing,
(ii) edge detection, and (iii) edge smoothing components, the op-
timization routine, and upscaling/downsampling routines.
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