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Supplementary Material

1. Qualitative analysis
Figure 1 provides a detailed visualization of the uncer-

tainty maps during the training phase, highlighting the im-
pact of our consistency regularization approach within the
UG-CEMT framework. As demonstrated in our qualitative
analysis (main paper), initially, the maps exhibit higher
uncertainty, reflecting the model’s early learning stage. As
training progresses, the maps show increasingly higher con-
fidence, demonstrating the effectiveness of our method.
Consistency regularization helps the model produce stable
predictions under various perturbations, enhancing the con-
fidence and accuracy of predictions over time. It indicates
that UG-CEMT effectively leverages consistency regular-
ization to improve learning from both labeled and unlabeled
data, resulting in more reliable and accurate segmentation.

2. Effect of Cross-Attention Ensemble Mean
Teacher Framework

Figure 2 illustrates the impact of our Cross-Attention
Ensemble Mean Teacher (CEMT) framework on model per-
formance. The CEMT integrates cross-attention mecha-
nisms (CA) and exponential weighted averaging (EWA) be-
tween the student and teacher models to enhance overall
segmentation performance. As demonstrated in our ablation
study (Effect of different components in main paper), the
inclusion of EWA in the baseline student-teacher (ST) setup
significantly improved the Dice score and reduced 95HD,
indicating the positive effect of averaging model weights
over time. Incorporating CA further enhanced these met-
rics, highlighting the importance of effective feature align-
ment and information exchange between the student and

teacher models. The visual results in Figure 2 showcase
how the EWA and CA components in the CEMT framework
progressively reduce uncertainty and increase confidence in
the predictions during the training process. The CA facili-
tates robust feature interactions, while EWA ensures stable
and generalized learning. This combination leads to more
accurate and consistent segmentation results over time.

3. Comparison with state-of-the-art methods
In this supplementary section, we provide additional

quantitative comparisons of our proposed UG-CEMT
method with recent state-of-the-art semi-supervised learn-
ing (SSL) methods such as PLGC, CauSSL, and MCF. Due
to space constraints, these detailed results are presented
here to complement the qualitative analysis provided in the
main manuscript. Table 1 compares the performance of
UG-CEMT and other SSL methods on the LA dataset across
different labeled data ratios (5%, 10%, and 20%). UG-
CEMT consistently outperforms other methods, particularly
in terms of Dice and 95HD metrics. For example, with 5%
labeled data, UG-CEMT achieves a Dice score of 85.89%,
compared to 85.02% from MCF and 84.17% from CauSSL.
As the labeled data increases, UG-CEMT continues to show
its superiority, achieving 89.73% Dice with 20% labeled
data, while other methods, such as CauSSL and MCF, reach
only 88.87% and 89.05%, respectively.

This shows that UG-CEMT’s innovative integration
of cross-attention, uncertainty-guided regularization, and
SAM significantly enhances segmentation performance,
even with limited labeled data. Table 2 shows a similar
trend on the multi-site prostate dataset. UG-CEMT consis-
tently achieves the best performance across different labeled
data percentages. With 5% labeled data, UG-CEMT yields
a Dice score of 65.68%, outperforming MCF (64.18%)
and PLGC (62.59%). As the labeled data increases, UG-
CEMT continues to dominate, achieving 72.02% Dice with
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Figure 1. Visualization of uncertainty maps. (a) The overlap predicted (green line) and GT (red line) regions. (b), (c), (d), (e), and (f) are
the uncertainty maps at 2000, 3000, 4000, 5000, and 6000 iterations.

Figure 2. Effect of cross attention ensemble mean teacher framework visualized outcomes. (a) Without CA and EWA. (b) Without CA and
with EWA, (c) With CA and EWA.

Table 1. Comparison of the proposed UG-CEMT with other state-
of-the-art SSL methods on LA dataset for 6000 iterations.

Method (%) of images used Metrics
labeled unlabeled Dice ↑ Jaccard ↑ 95HD ↓ ASD ↓

PLGC 4(5%) 76 83.98 72.16 11.35 4.34
CauSSL 4(5%) 76 84.17 72.89 8.68 5.23
MCF 4(5%) 76 85.02 73.78 9.78 4.08
CEMT(Ours) 4(5%) 76 85.23 75.16 5.12 1.32
UG-CEMT(Ours) 4(5%) 76 85.89 76.23 3.39 0.69
PLGC 8(10%) 72 85.23 77.32 7.59 3.49
CauSSL 8(10%) 72 85.89 76.58 7.25 3.28
MCF 8(10%) 72 87.12 78.03 6.82 3.62
CEMT(Ours) 8(10%) 72 87.03 78.26 3.39 0.67
UG-CEMT(Ours) 8(10%) 72 88.16 79.83 3.08 0.51
PLGC 16(20%) 64 88.23 80.09 6.25 2.89
CauSSL 16(20%) 64 88.87 79.68 6.02 3.16
MCF 16(20%) 64 89.05 81.12 5.16 2.75
CEMT(Ours) 16(20%) 64 89.12 80.94 3.78 0.66
UG-CEMT(Ours) 16(20%) 64 89.73 81.63 2.20 0.50

20% labeled data. The superior performance of UG-CEMT
demonstrates its robustness across multiple imaging modal-
ities and highlights its generalization capability on multi-
site datasets. These quantitative results confirm that our
proposed UG-CEMT method achieves better segmentation
accuracy than existing SSL methods. By incorporating
cross-attention and uncertainty-guided consistency regular-
ization, UG-CEMT delivers more reliable results, espe-
cially when the available labeled data is scarce.

4. computational cost analysis

This supplementary material provides a detailed analy-
sis of the computational costs for our UG-CEMT frame-
work. We focus on the key metrics: FLOPs, parameters,
memory usage, and training time, providing insight into
the practicality of our method for real-world applications.



Figure 3. Visualization of 3D segmentation outcomes of various SSL methods for 20% labeled data on pancreas CT dataset.

Table 2. Comparison of the proposed UG-CEMT with other state-
of-the-art methods on multi-site prostate dataset for 6000 itera-
tions.

Method (%) of images used Metrics
labeled unlabeled Dice ↑ Jaccard ↑

PLGC 5(5%) 87 62.59 53.86
CauSSL 5(5%) 87 62.78 52.62
MCF 5(5%) 87 64.18 54.69
CEMT(Ours) 5(5%) 87 63.68 55.82
UG-CEMT(Ours) 5(5%) 87 65.68 56.87
PLGC 9(10%) 83 68.13 57.19
CauSSL 9(10%) 83 67.05 57.52
MCF 9(10%) 83 69.54 58.78
CEMT(Ours) 9(10%) 83 69.23 59.26
UG-CEMT(Ours) 9(10%) 83 70.36 60.73
PLGC 18(20%) 74 69.23 59.02
CauSSL 18(20%) 74 68.09 58.65
MCF 18(20%) 74 70.89 59.89
CEMT(Ours) 18(20%) 74 70.13 60.16
UG-CEMT(Ours) 18(20%) 74 72.02 61.29

UG-CEMT includes cross-attention mechanisms after each
of the four decoder blocks in both student and teacher
networks, enhancing segmentation performance. Table 3
shows a summary of the FLOPs and parameters. While

Table 3. Layer wise summary of the FLOPs and parameters.

Layer/Component Params (Million) FLOPs (GFLOPs)
Encoder Blocks (total) 2.17 15.23
Decoder Blocks (total) 0.92 15.62
Cross-Attention Mechanism ≈ 0.2% overhead ≈ 0.001% overhead
Total 9.66M 47.1G

the cross-attention mechanism adds computational com-
plexity, the overall cost remains manageable for deploy-
ment on modern GPUs. UG-CEMT requires approximately
1843 MB of GPU memory, including a small overhead from
the cross-attention mechanism (∼10MB). This makes the
model suitable for single-GPU setups, standard in research
and clinical environments. It was trained on an NVIDIA
A6000 GPU (48GB). The average training time for 6000
iterations is approximately 1 hour 50 minutes. The cross-
attention mechanism adds little overhead in terms of train-
ing time, ensuring efficient model training. Moreover, we
compared the computational cost of UG-CEMT with other

state-of-the-art SSL methods in Table 4. Although UG-
CEMT slightly increases computational complexity due to
cross-attention, it achieves significant improvements in seg-
mentation performance while remaining computationally
efficient.

Table 4. Comparison of computational costs and training time for
different semi-supervised learning methods.

Model FLOPs (GFLOPs) Params(Million) Training time (hrs)
MCF 36.8 8.7 ≈ 2.5
CauSSL 39.6 9.0 ≈ 4.0
PLGC 40.2 8.8 ≈ 3.2
MT 24.8 7.5 ≈ 1.4
UA-MT 27.5 7.2 ≈ 1.3
UG-CEMT (ours) 47.1 9.66 ≈ 1.5

5. Experiments on Additional Modality: Pan-
creas CT Dataset

5.1. Dataset details:

The NIH Pancreas dataset is a publicly available dataset
comprising 82 contrast-enhanced abdominal 3D CT vol-
umes with manual annotations. Each CT volume has a size
of 512× 512×D, where D ∈ [181, 466], representing the
number of slices. For evaluation purposes, we divide the
NIH pancreas dataset into 62 for training and 20 for test-
ing. In the preprocessing stage, we apply the soft tissue CT
window [−120, 240] HU and crop the CT scans centered at
the pancreas region with an additional margin of 25 voxels.
The training volumes are randomly cropped to 96×96×96
for training, and a stride of 16 × 16 × 16 is applied during
inference. This setup is consistent with the preprocessing
strategy used in prior works, ensuring a fair comparison.

5.2. Implementation details:

The same network architecture and hyperparameter set-
tings described in the main manuscript for LA and prostate
segmentation are used for the pancreas CT dataset. For de-
tailed parameter settings, network architecture, and train-
ing procedures, please refer to the implementation section
of the main manuscript. The hardware setup, including the



single NVIDIA A6000 GPU, is used to train the model with
a total training time of approximately 1.5 hours for 6000 it-
erations.

5.3. Results and analysis

To further assess the generalizability of UG-CEMT
across different medical imaging modalities, we conducted
experiments on the NIH Pancreas CT dataset. The qualita-
tive and quantitative results demonstrate the robustness of
our model compared to other state-of-the-art SSL methods
such as MT, CPS, PLGC, CauSSL, and MCF.

Quantitative Analysis: Table 5 presents the quantita-
tive comparison of the proposed UG-CEMT framework
with other SSL methods on the pancreas CT dataset. As
shown, UG-CEMT outperforms the baseline methods
across different metrics, including Dice and 95HD scores,
mainly when using limited labeled data (10% and 20 %).
With 10% labeled data, UG-CEMT achieved a Dice score
of 71.23% and a 95HD of 17.01 mm, and outperforms
methods such as MCF and PLGC. For the 20% labeled
data setting, UG-CEMT attained the highest Dice score of
73.49% and a 95HD of 10.26 mm, indicating the model’s
superior performance in segmenting complex CT structures
with limited labeled data. Compared to the fully supervised
baseline V-VNet and B-VNet using 100% labeled data,
UG-CEMT achieves competitive performance even with a
significantly smaller labeled dataset, showcasing its effec-
tiveness in semi-supervised learning setups. This further
validates the ability of UG-CEMT to leverage unlabeled
data effectively for improving segmentation outcomes.

Table 5. Comparison of the proposed UG-CEMT with other state-
of-the-art methods on pancreas CT dataset for 6000 iterations.

Method (%) of images used Metrics
labeled unlabeled Dice 95HD

V-VNet 62(100%) 0 80.65 8.56
B-VNet 62(100%) 0 80.02 8.89
V-VNet 12(20%) 0 64.53 19.84
B-VNet 12(20%) 0 63.87 20.76
MT 6(10%) 56 68.07 18.68
CPS 6(10%) 56 67.28 22.59
PLGC 6(10%) 56 69.83 18.73
CauSSL 6(10%) 56 69.76 19.32
MCF 6(10%) 56 70.12 17.67
UG-CEMT(Ours) 6(10%) 56 71.23 17.01
MT 12(20%) 50 71.28 14.93
CPS 12(20%) 50 72.16 18.02
PLGC 12(20%) 50 71.58 13.69
CauSSL 12(20%) 50 72.02 12.87
MCF 12(20%) 50 72.18 11.59
UG-CEMT(Ours) 12(20%) 50 73.49 10.26

Qualitative Analysis: Figure 3 provides a qualitative
comparison of the 3D segmentation results generated by
different SSL methods on the pancreas CT dataset for 20%
labeled data. The visualization clearly shows that UG-

CEMT produces segmentation outputs that closely resem-
ble the ground truth (GT) and are superior to other meth-
ods in terms of capturing the fine details of the pancreas
region. In contrast, methods like MCF, CPS, and CauSSL
exhibit over-segmentation or under-segmentation artifacts,
leading to less accurate delineations of the pancreatic struc-
ture. UG-CEMT’s ability to produce high-confidence pre-
dictions from uncertainty-guided maps (UGMs) further en-
hances its segmentation accuracy, especially in challenging
areas. These results confirm that UG-CEMT can general-
ize effectively to different imaging modalities beyond MRI,
such as CT, and provide reliable segmentation results across
diverse datasets.
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