
Appendix

6. Licenses

Below in Table 5 the licenses of the code and assets we
make use of are listed. Neo360 is listed because we use its
re-implementation of PixelNeRF.

Table 5. Licenses.

Item License

CARLA code MIT
CARLA assets CC-BY
NeRFStudio Apache-2.0
PixelNeRF BSD-2-Clause
SplatterImage BSD-3-Clause
6Img-to-3D BSD-3-Clause
Neo360 Non-commercial attribution

7. Dataset Details

7.1. Extended Dataset Description

The static (3D) dataset encompasses 212k inward—and
outward-facing vehicle images, while our dynamic (4D)
dataset contains 16.8M images from 10k trajectories, each
sampled at 100 points in time with egocentric and exocen-
tric images. Data for the static dataset is collected from
2002 scenes, and for the dynamic dataset, from 498 scenes.
Because the static and the dynamic datasets differ in amount
of vehicles that are equipped with sensors they differ in their
composition as highlighted in Table 6.

Table 6. Number of Views.

Dataset Egocentric Exocentric

Static (all) 12k 200k
Static (per vehicle) 12k 200k
Dynamic (all) 6.3M 10.5M
Dynamic (per vehicle) 300k 500k

The uncompressed static dataset has a total size of 437
GB and took 132 hours of GPU time to be generated. Per
scene, this corresponds to a size of 0.218 GB and a genera-
tion time of 4 minutes. The uncompressed dynamic dataset
is 1673 GB large and took 390 hours of GPU time to be gen-
erated. Since the dataset contains images from 498 scenes
and 21 vehicles per scene this results in 10458 sequences.
Each sequence with a length of 100 timesteps has a size of
0.160 GB and required 2.23 minutes to generate.

7.2. Directory Setup

Each of the datasets (static and dynamic) is organized in
the following way: towns, weather, ego vehicle type, ego-
position (spawn point), timesteps, vehicles in the scene, and
finally folders containing the actual sensor measurements,
transforms, and camera information.

Dynamic Dataset

Town01

ClearNoon

vehicle

spawn point 1

step 0

370

nuscenes

sensors

0 depth.png

0 instance seg.png

0 lidar.ply

0 optical flow.png

0 rgb.png

0 semantic seg.png

transforms

transforms.json

camera info.json

nuscenes lidar

sphere

371

372

step 1

step 2

spawn point 2

spawn point 3

Figure 6. Qualitative Results for the single-shot few image scene reconstruction methods.

Figure 7. Qualitative Results for the multi-view per scene optimization methods.

8. Benchmark Details

8.1. Qualitative Results

Multi-view Novel View Synthesis. Figure 7 compares
the qualitative results of Splatfacto, Nerfacto, and K-Planes.
Our analysis shows that K-planes generalizes best both
quantitatively and qualitatively, as demonstrated by the
minimal presence of floaters. Interestingly, SplatFacto sig-
nificantly outperforms both other methods on the training

set but performs worst on the test set, as shown in Table 7.
We hypothesize that K-Planes’ planar representation pro-
vides geometric regularization that enhances generalization
performance.

Single-shot Few-Image Scene Reconstruction. In Fig-
ure 6, the methods performing single-shot few-image scene
reconstruction. K-Planes, NeRFacto, and PixelNerf visi-
bly struggle to reconstruct the scene. Where the unpro-

Table 7. Training and Testing result comparison of Multi-view Novel View Synthesis Methods.

Train Test

Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
SplatFacto [48] 44.019 0.984 0.014 24.458 0.806 0.210
NeRFacto [97] 36.206 0.930 0.091 24.936 0.804 0.227
K-Planes [29] 29.827 0.820 0.254 25.744 0.816 0.239

jected depth maps obtained via Metric3D and ZoeDepth
result in pixel values good results are obtained. The few-
image SplatterImage and 6Img-to-3D perform reasonably
well. Due to their low performance, we do not visualize
SplatFacto K-Planes and NeRFacto at the bottom part.

8.2. Training Details

K-Planes We train each of the models for 30k steps on a
single Tesla T4 GPU with 16GB of VRAM. We follow the
model’s default NeRFStudio [97] settings for training. Near
and far bounds of the scene are adjusted to 0.1 to 60 to best
accommodate the scenes. Additionally, scene contraction is
applied. The training took around 1.5 hours per model.

NeRFacto We train each of the models for 30k steps on
a single Tesla T4 GPU with 16GB of VRAM. We follow the
model’s default NeRFStudio [97] settings for training. We
disable the model’s use of an appearance embedding since
those lead to problems during the evaluation, and we also
deactivate the camera pose optimization because we already
provide the model with ground truth poses. The near and
far bounds are set to 0.1 and 60. Each model is trained for
a total of 1 hour.

SplatFacto We train each of the models for 30k steps on
a single Tesla T4 GPU with 16GB of VRAM. We again fol-
low the model’s default NeRFStudio [97] settings for train-
ing. The model took a total of 20 minutes to train.

PixelNeRF We train PixelNeRF for 100k steps on a
Nvidia A40 GPU with 42GB of VRAM, with an Adam op-
timizer [51] and a learning rate of 1e-3. Total training time
accumulates to five days.

SplatterImage We train SplatterImage for a total of five
days across five 3090 GPUs with 24GB of VRAM. During
training the supervision images are scaled to 128×128 pix-
els. We use the multi-input image variant of the model to
accommodate all six input views.

6Img-to-3D We train 6-Img-to-3D, following their [34]
process, with a Nvidia A40 GPU with 42GB of VRAM for
100 epochs with an Adam optimizer [51], a learning rate of
5e-5, and a cosine scheduler [65] with 1000 warmup steps.
Each epoch consists of 1900 steps, each comprising a new
scene and three randomly sampled views as supervision,
scaled to 64 × 48 pixels. The total training of the model
is five days.

ZoeDepth and Metric3D were not fine-tuned using our

data. For the single-shot few image reconstruction task, we
tested both monocular depth estimation as a baseline. We
obtained a depth map for each of the six ego input images
resized to 842 × 842 to fit the model. Since camera intrin-
sics and extrinsic are known, we can use the depth maps to
project the image pixels into space to obtain a colored point
cloud (sometimes also referred to as 2.5D). The obtained
colored point cloud can now be used to rasterize novel exo
views.

9. Leaderboard

We will actively maintain a leaderboard on the project
page accompanying our SEED4D paper. We welcome con-
tributions to one of the proposed benchmarks or other sub-
missions using the datasets. Submissions can be made by
contacting the first author.

10. Hosting, licensing, and maintenance plan

Hosting. To find the latest hosting information of our
datasets please see our project page here.

Licensing. Below in Table 8 the licenses of the code and
assets we are publishing are listed.

Table 8. Own Licenses.

Item License

Data generator code BSD-3-Clause
Static dataset CC BY-SA 4.0
Dynamic dataset CC BY-SA 4.0
ArXiv paper CC BY 4.0

Responsibility Statement We believe that our datasets
comply with existing licenses and have adhered to their
terms and conditions. Despite our careful attention to these
requirements, we acknowledge that any responsibility for
any potential rights violations remains solely ours. We take
accountability for ensuring that all content and actions are
following legal and ethical standards.

https://seed4d.github.io/

11. Data Generation Details

11.1. Carla Towns

The towns available within Carla vary in scenery, road
structure, and size, with key characteristics highlighted be-
low:

Town 1: Town 1 is a compact environment divided by a
river with several small bridges. The road network includes
numerous T-junctions and a variety of buildings, both resi-
dential and commercial, surrounded by coniferous trees.

Town 2: Town 2 consists of a mix of residential
and commercial areas, including a central park, apartment
buildings, a church, and a gas station. The road network is
composed of T-junctions and tree-lined streets.

Town 3: Town 3 is an urban area featuring a central
roundabout, raised metro tracks, and a diverse mix of com-
mercial and residential buildings. The road network in-
cludes four-way junctions, T-junctions, an underpass, over-
passes, and cul-de-sacs.

Town 4: Town 4 is a small town with a ring road in
a ”figure of 8” configuration that includes an underpass
and overpass. The town features commercial and residen-
tial buildings, tree-lined streets, nearby snow-capped moun-
tains, and a pedestrian shopping arcade.

Town 5: Town 5 is an urban setting with multilane roads
and a raised highway forming a ring road. The layout in-
cludes commercial buildings, a construction site, and a large
carpark, with roads passing beneath one of the buildings.

Town 6: Town 6 is a low-density area with wide 4-6 lane
roads interconnected by slip roads and junctions, including
Michigan Left configurations. The layout features desig-
nated turning lanes and cul-de-sacs.

Town 7: Town 7 represents a rural area with cornfields,
barns, grain silos, and windmills. Its road network is simple,
with unmarked roads, a small residential street, and a short
bridge over a water body.

Town 10: Town 10 is an urban grid layout with a mix of
junction types, including yellow-box intersections and ded-
icated turning lanes. The town features waterfront prome-
nades, tree-lined boulevards, skyscrapers, and public build-
ings such as a museum.

More information about the Carla simulator can be found
in the official Carla documentation [25].

11.2. Camera Poses

The algorithm to obtain the spherical Fibonacci lattice is
described in detail in Algorithm 1. The procedure equally
spaces points on a half-disk. The obtained points are then
translated into Carla world coordinates. To obtain the
proper camera orientations, we introduce the procedure pre-
sented in Algorithm 2.

Algorithm 1 Exocentric camera coordinates

1: procedure CREATE SPHERE(N) ▷ N points
2: ϕ = 3π −

√
5

3: ys← linspace(0, 1, N)
4: points← empty list
5: idx← 0
6: for y in ys do
7: x = cos(ϕ · idx) ·

√
1− y2

8: y = sin(ϕ · idx) ·
√
1− y2

9: z = y
10: points[idx] = [x, y, z]
11: idx = idx+ 1
12: end for
13: return points ▷ dim: N x 3
14: end procedure

Algorithm 2 Exocentric camera orientation

1: procedure CREATE SPHERE(points)
2: pitchs, yaws← empty lists
3: idx← 0
4: for point in points do
5: x, y, z ← point
6: pitch = arcsin(z)
7: yaw = sign(x) · arccos(y

x2+y2)
0.5

8: pitchs[idx], yaws[idx] = pitch, yaw
9: idx = idx+ 1

10: end for
11: return pitches, yaws
12: end procedure

12. Style transfer
We experimented with existing style transfer methods to

reduce the domain gap between Carla and NuScenes’ im-
ages. The results in Figure 8 are obtained using a CylceGan-
based framework as proposed in [49]. The checkpoint of
our trained model will be made available.

13. Dataset Visualization.
All full RGB images are paired with depth maps, op-

tical flow, segmentation maps, and instance segmentation
images. Since all values are ground truth, they can, for ex-
ample, be used to generate a colored 3D point cloud using
the camera’s extrinsics and intrinsics, as shown in Figure
9. The sensory setup for an egocentric view is visualized
in 10. Figure 11 and Figure 12 the static ego–exo dataset
is visualized. Figure 13 and Figure 14 display the dynamic
ego–exo dataset.

 https://carla.readthedocs.io/en/latest/

Figure 8. Example style transfer results. ’C’ denotes Carla images, ’C-to-N’ indicates a transfer from the Carla domain to the NuScenes
domain. ’N’ indicates NuScenes views, and ’N-to-C’ signifies images transferred from the NuScenes domain into the Carla domain. Note:
The cycle consistency step, into the original domain, is not illustrated here.

Figure 9. Colored 3D point cloud generated from RGB images, depth maps, camera intrinsics, and extrinsics.

Figure 10. An overview of six egocentric cameras and their associated sensor measurements.

Figure 11. Samples from the Static Ego–Exo Dataset showing towns 1 to 4. The egocentric images show front left, front center, and front
right views. The exocentric views are randomly sampled.

Figure 12. Samples from the Static Ego–Exo Dataset showing towns 5 to 7 and 10HD. The egocentric images show front left, front center,
and front right views. The exocentric views are randomly sampled.

Figure 13. Samples from the Dynamic Ego–Exo Dataset showing towns 1 to 4 for timepoints 5, 20, and 65. The egocentric images show
front left, front center, and front right views. The four exocentric views have the same relative pose across all samples.

Figure 14. Samples from the Dynamic Ego–Exo Dataset showing towns 1 to 4 for timepoints 5, 20, and 65. The egocentric images show
front left, front center, and front right views. The four exocentric views have the same relative pose across all samples.

	. Licenses
	. Dataset Details
	. Extended Dataset Description
	. Directory Setup

	. Benchmark Details
	. Qualitative Results
	. Training Details

	. Leaderboard
	. Hosting, licensing, and maintenance plan
	. Data Generation Details
	. Carla Towns
	. Camera Poses

	. Style transfer
	. Dataset Visualization.

