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1. Details on Synthesis network in Stage 1

1.1. Brief Explanation

In this section, we will provide a more detailed expla-
nation of the learning scheme for the synthesis network in
Stage 1. The notations follow those defined in the main
manuscript. The primary objective of this network is to
effectively disentangle the structural (content) information
and contrast (style) information from both MR and CT im-
ages. By integrating the structural information from MR
with the contrast information from CT, we aim to gener-
ate an initial synthetic CT (synth-CT) that is structurally
coherent with MR. Although the CT style is applied glob-
ally, the generated synth-CT may lack accurate textures and
sharp details. These limitations can be addressed in Stage 2
through feature aggregation using the DACA block.

Since the architecture of the network has already been
described in the main manuscript, we will focus here on
explaining the three composite loss functions used to train
the network.

In this network, the encoders and decoders consist of
convolutional modules. The style encoder applies global
average pooling at the final layer to extract global style fea-
tures, which capture the contrast or intensity information
from the CT image. The encoders follow the same notation
as in Figs. 1, 2, and 3, and share parameters across these
figures.

The losses are composed of self-reconstruction loss,
latent-reconstruction loss, and cycle consistency loss. The
purpose of self-reconstruction loss is to enhance the fea-
ture extraction capability of the encoder through identity re-
construction for each image. This will prevent the encoder
from losing important features. The latent reconstruction
loss aims to enhance disentangled representation by regu-
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larizing the content and style codes to maintain consistency
in the latent space. For the content code, the code (cMR)
extracted from IMR and the code (c′CT ) extracted from
the image (ÍCT ), which is generated using the same cMR,
should be identical in the latent space. For the style code, if
the input data and the generated data belong to the same
domain, their style codes should also be identical in the
latent space. Cycle consistency loss Since the data pairs
are misaligned, perfect ground truth is unavailable, so we
applied the widely-used cycle consistency loss in unsuper-
vised learning. As shown in Fig. 3, we used sMR instead of
s′MR when reconstructing ĨCT to reduce training complex-
ity, while the latent consistency loss ensured both elements
were identical.

1.2. Self reconstruction loss

Figure 1. Self reconstruction loss for training the synthesis net-
work
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Figure 2. Latent reconstruction loss for training the synthesis net-
work

1.3. Latent reconstruction loss
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1.4. Cycle consistency loss

Figure 3. Cycle consistency loss for training the synthesis network
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[∥∥∥ĨCT − ICT

∥∥∥
1

]
2. Underestimated Segmentation Accuracy

The Dice coefficients presented in Table 2 of the main
manuscript are generally lower due to inaccuracies in the

ground truth. Although MR images offer superior soft tis-
sue contrast, they produce weak signals from bones, which
can result in errors when using TotalSegmentator to obtain
segmentation labels. As shown in Figure 4, the masking
results of the generated pseudo-CT are precise, but errors
in the ground truth result in underestimated segmentation
accuracy.

3. Metric: Gradient correlation(GC)
To evaluate the structural correlation between different

imaging modalities, we used Gradient Correlation (GC)
with Canny edge detection. We set the threshold for MR
images to (170, 190) to capture strong edges, CT images to
(30, 50). The visualizations are shown in Fig. 5.

4. Additional Comparison with Registration
Methods

In MR images, bone structures are often not clearly dis-
tinguishable from surrounding tissues, which can lead to er-
rors in bone registration. However, our proposed method
successfully aligns the bone areas with the estimated bone
regions in the MRI, as demonstrated in the zoomed view in
Fig. 6. Further results are presented in Figs. 7 and 8.



Figure 4. Visualization of segmentation masks for the bones (hips, femurs). (i) Ground truth segmentation mask obtained from MR is
overlaid on the MR image. (ii) Segmentation mask obtained from (iii) is overlaid on the MR image.

Figure 5. Visualization of Gradient Correlation Metric(GC)



Figure 6. Comparison of Registration methods (SyN, Voxelmorph, GradICON) against ours.

Figure 7. Comparison of reference CT, registration method (VoxelMorph), and ours. CT values are thresholded to highlight bone regions
in red and overlaid onto MR images.



Figure 8. Comparison of reference CT and ours, highlighting bone region misalignment.


