
Appendix

A. Effect of Different Architectures
A.1. Different Student

To show the generality of RDCD, we adopt one
lightweight model each from the most commonly used ar-
chitectures in computer vision, CNN and ViT, conducting
experiments with MobileNet-V3 and FastViT-T12. Our re-
sults are shown in Table 7, Table 8, Table 9. Specifically,
using FastViT under the same conditions resulted in a µAP
of 67.4, demonstrating the research potential for ViT stu-
dent.

Table 7. Performance of DISC2021 with different student archi-
tectures. * means our implementation.

Method Network dim µAP µAPSN

using lightweight ∗

SSCD Mob-V3 128 45.5 56.2
SSCD FastViT-T12 128 42.5 59.7
SSCD Mob-V3 256 47.3 60.1
SSCD FastViT-T12 256 43.1 59.5
ours
RDCD Mob-V3 128 50.6 60.8
RDCD FastViT-T12 128 48.5 61.1
RDCD Mob-V3 256 53.9 65.6
RDCD FastViT-T12 256 56.4 67.4

Table 8. Performance of CD10K(Copydays+ 10k distractors) with
different student architectures. * means our implementation.

Method Network dim mAP µAP

Multigrain RN-50 1500 82.3 77.3
DINO ViT-B/8 1536 85.3 91.7
DINO ViT-B/16 1536 80.7 88.7
SSCD RN-50 512 85.0 97.9
SSCD ResNext-101 1024 91.9 96.5
using lightweight ∗

SSCD Mob-V3 128 68.9 97.1
SSCD FastViT-T12 128 60.9 87.0
SSCD Mob-V3 256 75.4 97.4
SSCD FastViT-T12 256 74.4 92.2
ours
RDCD Mob-V3 128 81.3 96.5
RDCD FastViT-T12 128 77.4 95.3
RDCD Mob-V3 256 83.5 97.6
RDCD FastViT-T12 256 79.3 97.0

A.2. Different Teacher

We demonstrate the effectiveness of our proposed ap-
proach in scenarios where the teacher networks belong to
different architectural families (ViT or CNN), with student
models also selected from these two distinct architectures.

Table 9. Performance of NDEC with different student architec-
tures. * means our implementation.

Method Network dim µAP µAPSN

DINO ViT-B/8 1536 16.2 22.8
DINO ViT-B/16 1536 18.1 26.2
SSCD RN-50 512 42.4 46.6
using lightweight ∗

SSCD Mob-V3 128 34.6 38.9
SSCD FastViT-T12 128 33.5 38.6
SSCD Mob-V3 256 36.8 41.5
SSCD FastViT-T12 256 33.3 38.3
ours
RDCD Mob-V3 128 35.5 39.3
RDCD FastViT-T12 128 35.1 38.7
RDCD Mob-V3 256 37.9 42.6
RDCD FastViT-T12 256 39.1 43.2

For the ViT, we use DINO as the teacher, and for the CNNs,
we use SSCD-RN50 and SSCD-ResNeXt-101. All models
are trained on SSCD-RN50 hyperparameter settings. With
DINO as the teacher model, we follow the ICD settings pre-
sented in [5] for the DINO baseline. Consequently, we dis-
till a descriptor size of 1536 from the teacher (concatenation
of 768 class tokens and 768 GeM pooled patch tokens). In
the case of ResNeXt-101 teacher model, we distill the final
target descriptor with a size of 1024. Table 10 shows that
our method is highly effective for the different architectures,
highlighting its adaptability and robustness.

Table 10. DISC2021 evaluation with different architectures. All
experiments are performed with a descriptor size of 128.

T
S EN-B0 FastViT-T12 Mob-V3

µAP µAPSN µAP µAPSN µAP µAPSN

DINO-ViT-B/8 32.1 52.1 28.1 52.2 39.6 54.7
SSCD-RN-50 50.0 61.1 48.5 61.1 47.3 58.8

SSCD-ResNeXt-101 44.9 59.9 42.8 57.4 41.1 56.6

B. Intermediate Descriptor
In this study, we evaluate the performance of DISC2021

using an intermediate descriptor designed to align the de-
scriptor size with that of the teacher model. We assess a
512-dimensional descriptor both with and without the ap-
plication of HN loss, utilizing the EfficientNet-B0 network
architecture. Our results (Table 12) show that the proposed
RDCD method consistently outperforms SSCD across two
projection sizes, 128 and 256. Furthermore, our analysis re-
veals that the performance gap between using and not using
HN loss is negligible, and the intermediate descriptor fully
exploits its 512-dimensional capacity without HN loss. This
finding suggests that the student model is effectively trained
under the guidance of a teacher model equipped with an en-
tropy regularizer.



Table 11. The following table demonstrates that when dimension reduction is applied to the descriptor through PCA whitening, our
approach outperforms the existing baseline in terms of µAP performance. We do not apply Mixup. * means our implementation.

Method Network dim µAP µAPSN µAPSN256 µAPSN128 µAPSN64

DINO ViT-B/8 1536 32.6 54.4 47.7 42.3 32.7
DINO ViT-B/16 1536 32.2 53.8 47.4 42.0 32.0
SSCD RN-50 512 43.6 72.5 66.0 56.3 38.3
SSCD ResNext-101 1024 63.7 75.3 65.5 54.0 34.8

using lightweight ∗

SSCD EN-B0 64 38.2 48.5 48.5 48.5 48.5
SSCD EN-B0 128 43.5 56.2 56.2 56.2 44.4
SSCD EN-B0 256 46.0 59.8 59.8 53.8 42.3
SSCD EN-B0 512 43.6 61.1 58.0 52.0 41.9
Ours

RDCD EN-B0 64 43.9 53.5 53.5 53.5 53.5
RDCD EN-B0 128 50.0 61.1 61.1 61.1 53.1
RDCD EN-B0 256 52.7 65.7 65.7 61.5 52.2

Table 12. Comparison of intermediate descriptor. We do not use
HN loss for SSCD method as they use Koleo regularizer.

128 projection
Hard Negative Loss No Yes
Method RSD FKD µAP µAPSN µAP µAPSN

SSCD(RN50) w/o mixup 60.4 71.1 - -
SSCD(EN-B0) w/o mixup 43.6 61.1 - -
SimCLR ✓ 56.1 68.0 55.2 67.6

✓ 56.3 69.7 56.3 69.7
✓ ✓ 56.6 69.5 56.7 69.6

MoCo-v2 ✓ 51.2 67.3 54.4 67.8
✓ 55.1 69.1 55.5 69.1
✓ ✓ 55.2 69.1 55.8 68.9

256 projection
Hard Negative Loss No Yes
Method RSD FKD µAP µAPSN µAP µAPSN

SSCD(RN50) w/o mixup 60.4 71.1 - -
SSCD(EN-B0) w/o mixup 43.6 61.1 - -
SimCLR ✓ 56.2 68.1 55.5 67.1

✓ 56.3 69.5 56.4 69.5
✓ ✓ 55.7 67.9 54.1 68.5

MoCo-v2 ✓ 53.3 67.4 54.3 67.7
✓ 53.7 68.2 55.4 68.9
✓ ✓ 55.8 69.2 56.1 69.0

C. PCA

The dimensionality of the descriptor plays a crucial role
in optimizing the trade-off between matching time and ac-
curacy during the matching phase of ICD. Previous ap-
proaches have employed PCA and PCA whitening to create
compact descriptors. Following [31], the post-processing
technique of PCA whitening is known for its efficacy in
making the descriptor distribution more uniform. Our
RDCD method, trained via deep learning, exhibits supe-
rior performance compared to the baseline, which utilizes
large-sized descriptors that have undergone PCA whitening.
These results are detailed in Table 11.

Table 13. Comparison of other distillation. All methods are trained
with EfficientNet-B0 network. We do not use Hard Negative loss
for SSCD method as they use Koleo regularizer.

128 descriptors
Hard Negative Loss No Yes
Method RSD FKD µAP µAPSN µAP µAPSN

SSCD 43.5 56.2 - -
SimCLR ✓ 46.2 58.7 48.4 59.9

✓ 47.4 59.6 49.6 61.4
✓ ✓ 47.5 59.6 50.8 61.5

MoCo-v2 ✓ 40.3 57.5 44.8 59.1
✓ 47.1 60.7 50.0 61.1
✓ ✓ 46.2 59.3 49.6 61.0

256 descriptors
Hard Negative Loss No Yes
Method RSD FKD µAP µAPSN µAP µAPSN

SSCD 46.0 59.8 - -
SimCLR ✓ 51.7 64.0 51.4 64.5

✓ 52.2 65.6 52.7 65.8
✓ ✓ 52.4 65.5 49.9 64.6

MoCo-v2 ✓ 41.3 56.6 46.1 60.1
✓ 47.2 61.0 52.9 65.7
✓ ✓ 47.3 60.8 53.2 65.9

D. Comparison with Other Forms of Distilla-
tion

To further demonstrate the efficacy of RSD, we conduct
a comparative analysis with FKD by 1) employing FKD
alone, 2) employing RSD alone, and 3) integrating both
FKD and RSD in Table 13. We also employ SimCLR-style
contrastive learning. When FKD and RSD are combined,
the best performance is observed in several cases, suggest-
ing that combining both distillation methods can further im-
prove performance. Nevertheless, RSD consistently outper-
forms FKD in all cases, with RSD alone achieving perfor-



Table 14. Ablation study on the computational cost during train-
ing. All experiments are conducted on a single A100 GPU using
FP32 precision with EFF-B0 architecture and a descriptor size of
256. All metrics are calculated with a batch size of 256 except for
FLOPs, which we measured with a batch size of 1.

Method Contrastive Learning Distillation #Params FLOPs Time per Epoch VRAM
(M) (G) (min) (G)

SSCD SimCLR X 4.3 0.828 58.46 49.7
- - O 29.3 8.732 40.06 28.1
- SimCLR O 29.4 9.16 74.34 54.9
RDCD MoCo-v2 O 34.2 9.9 51.25 29.8

Table 15. Comparison of computational cost during evaluation,
highlighting our method’s high efficiency. We evaluate images
with 288x288 size. FLOPs is calculated with a batch size of 1.

Method Architecture #Params FLOPs Throughput Search Time dim µAP
(M) (G) (image/sec)

DINO ViT-B/8 85.204 133.699 87.76 37.5 1536 54.4
SSCD RN-50 24.6 8.265 903.58 15.518 512 72.5
RDCD EN-B0 4.8 0.829 1087.75 10.121 256 65.7

mance on par with the combined use of both distillation
methods. This indicates that RSD is sufficiently robust, and
FKD does not significantly alter the outcome. It confirms
that RSD can operate alone to enhance the performance of
compact descriptors.

E. Practicality of RDCD
We perform additional analysis of practicality on RDCD.

To highlight the computational cost of each component,
in Table 14 we conduct ablation experiments by removing
contrastive learning and distillation. SSCD uses SimCLR
without distillation. We found that our method requires
29.9 million more parameters than SSCD for training, pri-
marily due to the large teacher network, which accounts for
24.0M parameters. Additionally, our method consumes a
total of 9.9G of FLOPs: 8.3G for distillation and 1.6G for
contrastive learning. Nevertheless, SSCD’s use of SimCLR
leads to a proportional increase in VRAM usage with larger
batch sizes. In our RDCD, we adopt MoCo-v2 which stores
negative features in a queue, significantly reducing VRAM
usage. By leveraging MoCo-v2, our method achieves 0.6
times lower VRAM usage compared to SSCD and also re-
duces training time. Furthermore, our final performance
surpasses SSCD by 5.9.

Our RDCD incurs higher computational cost during
training but shows significant efficiency during evaluation.
Specifically, RDCD requires only 4.8M parameters during
evaluation, which includes an 0.5M additional parameters
from the EFF-B0 architecture. In copy detection, the eval-
uation involves two stages: model inference and database
search. High-speed search is crucial when retrieving from a
large-scale image database in real-world applications. We
evaluate search time using the DISC2021 dataset, which
consists of 1M database images and 50k query images.

As shown in Table 15, RDCD achieves superior efficiency
across all metrics compared to previous methods. DINO
and SSCD require 133.699G, 8.265G FLOPs, respectively,
due to their large architectures, while RDCD operates with
161 times lower FLOPs than DINO and 9.9 times lower
FLOPs than SSCD during model inference.

F. Qualitative Examples
In Figure 6, we present the queries along with the top-2

results retrieved by both the RDCD and SSCD methods for
cases where both methods accurately identify the ground
truth. However, it is noteworthy that RDCD consistently
retrieves a smaller similarity score difference between the
ground truth and the hardest negative sample, compared to
SSCD. For our matching evaluation, we employ a descriptor
of size 256, utilizing the EN-B0 network architecture.

Figure 6. Example of top-2 retrieval results from the DISC2021
dataset.


