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Table 1. Parameter comparison with other models

Method Params
Params
% CLIP

H

CoOp 2048 0.002 71.66
CoCoOp 35360 0.03 75.83
RPO 30720 0.02 77.78
MaPLe 3.55M 2.85 78.55
PromptSRC 46K 0.04 79.97
GPE 30720 0.02 79.24

The section below includes additional information, a
comparison of parameter efficiency, and additional ablation
studies of GPE.

1. Parameter Efficiency Comparison with Dif-
ferent Prompting Methods

Table 1 represents the number of trainable parameters
and the harmonic mean on base-to-novel generalization in
comparison with CoOp [6], CoCoOp [5], RPO [3], MaPLe
[1], PromptSRC [2], and GPE. As shown, GPE outper-
forms other methods updating a similar number of parame-
ters with a remarkable performance difference. Even when
compared to MaPLe, which has a significantly larger num-
ber of learnable prompts, GPE achieves superior perfor-
mance with considerably fewer parameters.

2. Additional Ablation Studies
Pre-softmax vs. Post-softmax for Inference Our investi-
gation reveals that making predictions by the traditional en-
semble method, which averages softmax-transformed log-
its, yields better results. In comparison with the pre-softmax
approach outlined in Table 2, where logits are averaged be-
fore softmax for inference, our default method exhibits en-
hanced performance. This emphasizes the importance of
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Table 2. Ablation study on GPE methods

Method Base Novel H

GPE 83.26 75.92 79.24
GPE w/ pre-softmax inference 83.43 75.68 79.17
GPE w/ centroid loss 81.62 74.76 78.04

considering the order of operations in ensemble methods,
particularly when optimizing model performance.
Covariance Regularization Effect When applying a loss
function that drives each prompt away from the centroid of
all prompts, as suggested in C-TPT [4], instead of covari-
ance loss, the performance dropped to 78.04%, as shown in
Table 2.
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