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Supplementary material

Algorithm A Spatial-aware Consistency Loss (SCL)
1: Notation: teacher network gt, student network gs

2: Input: original image xo, weak augmented image xw,
strong augmented image xs

3:

4: if iteration < 5000 then
5: λ1 = 0.0
6: else
7: λ1 = 1.0
8: end if
9:

10: # Calculate relative distances for masks
11: F o

ts = square(gt(xo) - gs(xo))
12: Fw

ts = square(gt(xo) - gs(xw))
13: F s

ts = square(gt(xo) - gs(xs))
14: # Calculate consistency distances in student
15: Dow = square(stopgrad(gs(xo)) - gs(xw))
16: Dos = square(stopgrad(gs(xo)) - gs(xs))
17: Dws = square(gs(xw) - gs(xs))
18: # Create update masks
19: Mo = F o

ts > Υ

20: Mw = Fw
ts < Υ

21: Ms = F s
ts < Υ

22: # Compute local losses
23: Lts = sum(F o

ts ⊙Mo) / sum(Mo)
24: Lunw = sum(Dos ⊙Mw) / sum(Mw)
25: Luns = sum(Dos ⊙Ms) / sum(Ms)
26: Lunws = sum(Dws ⊙Mw ⊙Ms ) / sum(Mw * Ms)
27: # Update criterion
28: if iteration == 0 then
29: Υ = F o

ts

30: else
31: Υ = α × Υ + (1 - α) × F o

ts

32: end if
33:

34: Llocal = Lts + λ1× (Lunw + Luns + Lunws)
35:

36: return Llocal

A. Input and Training Details

Our model has four input branches. Among these, the
three inputs are dedicated to the training of the student
model, and the other one is for training the feature-encoder
and feature-converter module. For the input size, the orig-
inal images are resized to 256×256 dimensions. It per-
forms normalization using the mean and standard deviation
values from the ImageNet dataset, where the mean values
are 0.485, 0.456, and 0.406, and the standard deviations
are 0.229, 0.224, and 0.225. Additionally, weak augmen-
tation involves shifting the images randomly by up to 3 pix-
els, while strong augmentation combines RandAugment [1]
with horizontal and vertical flips. The parameters for Ran-
dAugment are set to 4 and 10, respectively. For the feature-
encoder and Feature-converter Module (FM), the original
images are resized to 256×256 size. Furthermore, augmen-
tation is performed, including brightness, contrast, and satu-
ration, each with a parameter value of 0.2. The training pro-
cedure is conducted using the Adam optimizer with a batch
size of 1, involving 120,000 iterations on MVTec LOCO
and 70,000 iterations on MVTec 2D.

The weight decay is set to 1e-5 for the student model,
while 1e-6 is used for both the feature-encoder and FM.
Additionally, to align the training speed of the feature-
encoder with that of the student model, we update the stu-
dent weights using an exponential moving average with a
parameter of 0.999. The specific Spatial-aware Consistency
Loss (SCL) algorithm for the student model is described
in Algorithm A.

B. Analysis of Parameters

B.1. Analysis of λ1 and λ2

We study the impact of the loss balancing parameters λ1

and λ2. λ1 is a parameter associated with SCL, which reg-
ulates when the consistency loss is applied. To address the
potential low accuracy of the student model before learn-
ing, λ1 is set at 0 for the initial 5,000 iterations and is later
changed to 1.0 after some level of learning has taken place.
Tab. A and Tab. B presents the changes in image-level AU-
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Dataset
Iterations

AUROC (%)
λ1=0 λ1=1

MVTec LOCO

- ≥ 0 92.2
< 5,000 ≥ 5,000 92.6
< 10,000 ≥ 10,000 91.9
< 20,000 ≥ 20,000 91.8

Table A. The performance differences depending on λ1.

Dataset λ2 AUROC (%)

MVTec LOCO

0.01 90.3
0.1 92.6
0.2 92.2
0.4 92.5
0.8 89.8
1.0 89.6

Table B. The performance differences depending on λ2.

ROC on the MVTec LOCO based on the number of itera-
tions with λ1 maintained at 0. It is observed that applying
λ1 after the first 5,000 iterations yields better performance
than applying it from the outset, with a subsequent decrease
in performance observed beyond that point. λ2 are param-
eters that control the learning speed of the feature-encoder
and FM. At 0.1, it shows the best performance, with perfor-
mance gradually decreasing as it increases.

B.2. Analysis of dhard

We study the impact of the parameters dhard. It is a pa-
rameter that removes unnecessary feature positions, selec-
tively training only the loss values that correspond to the top
percentile. For example, when using a value like 0.99, dhard
is set as the top 99% of feature difference values as a thresh-
old, updating only those values that exceed this threshold.
dhard were set to 0.99, and the experimental results for this
parameter are presented in Tab. C. The experimental results
showed the best performance when dhard was 0.99. This in-
dicates that distilling only the influential values, rather than
distilling all areas of the student’s features into the feature-
encoder, is more helpful for anomaly detection.

Dataset dhard AUROC (%)

MVTec LOCO

0.0 91.2
0.5 91.6
0.9 92.0

0.99 92.6
0.999 92.0

Table C. The performance differences based on the dhard.

Dataset ema ratio, α AUROC (%)

MVTec LOCO

0.0 91.8
0.5 91.7
0.9 91.3

0.99 92.4
0.999 92.6
0.9999 91.2

Table D. The performance differences based on the ema.
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Figure A. The histograms of anomaly scores for Pushpins and
Capsule: Left represents the score histogram with only distillation
loss, while right shows the histogram with the learning of SCL.

C. Effectiveness of SCL
To qualitatively assess the impact of SCL, we conducted

additional analysis and Fig. A presents histograms compar-
ing anomaly scores when SCL is not applied versus when
it is applied. As shown, when we utilize the proposed loss,
anomaly scores are more distinctly separated, indicating im-
proved discrimination.

D. Effectiveness of EMA
The effectiveness of utilizing the information necessary

for training depends on how the criteria are established. We
compared performance based on the degree of ema, with
the results presented in Tab. D. The results indicate that
performance varies based on the degree of ema. This in-
dicates that the lightweight ratio is unaffected by SPACE,
while a heavyweight ratio exceeding 0.999 is detrimental.
However, we confirmed that this value yields the best per-
formance on the evaluated datasets.

E. Qualitative Results
We displays qualitative reigon in Fig. B, depicting the

masks that represent the regions used in training when em-



ploying SCL. In addition, Fig. C presents anomaly detec-
tion maps for the MVTec LOCO, MVTec AD, and VisA
datasets.
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Figure B. The region for updating features in augmented images. The columns from left to right represent (a) original images, (b) weak
augmented images, (c) the location and intensity region used in feature learning for the weakly augmentation, (d) a strongly augmented
image, and (e) the location and intensity region for the strong augmentation. In (c) and (e), the color scale signifies that a shift toward
red corresponds to a larger number of channels employed for learning in the feature, while a shift toward blue indicates the use of fewer
channels.



Figure C. The qualitative experimental results of anomaly maps. Columns 1, 4, 7 and 10 represent the original images, columns 2, 5, 8 and
11 show the ground truth masks, and columns 3, 6, 9 and 12 display the anomaly maps.


