
This supplementary material provides additional details
not included in the main paper due to space constraints. In
Sec. A, we provide detaileds about the four datasets we em-
ployed. Sec. B includes information on training details and
network hyperparameters. Sec. C details the features used
as conditions in our model. Sec. D represents additional
results for the rare sample generation. Sec. E describes fu-
ture works. Finally, Sec. F details the training and inference
algorithm.

A. Datasets
Kidney: We utilize the 2023 Kidney and Kidney Tumor
Segmentation Challenge (KiTS23) dataset [19]. KiTS23
is a challenge dataset designed for segmenting kidneys and
kidney tumors in CT scans. In our study, we used 406 tu-
mor subjects out of 489 in the provided challenge training
dataset, splitting them into 325 for training and 81 for the
test set. During training, the 3D patch volume was cropped
from the center of the tumor mask and patch volume size of
112 × 112 × 96 was employed. We clipped the intensities
to a range of [-175, 250] Hounsfield unit (HU) and further
normalized them to [0,1].
Lung: We employ the non-small cell lung cancer (NSCLC)
dataset [1]. This dataset consists of CT scans. In our study,
we utilized 417 tumor subjects out of the provided training
dataset of 422, dividing them into 334 for training and 83
for the test set. During training, the 3D patch volume was
cropped from the center of the tumor mask and volume size
of 112×112×80 was used. The HU range of [-1000, 1000]
was applied and normalized to [0,1].
Breast: We utilize a private dataset, which is a Dynamic
Contrast Enhancement MRI (DCE-MRI) dataset. MRI
scans were conducted using either a 1.5-T or a 3.0-T scan-
ner from Philips. The scans included axial imaging with one
pre-contrast and six post-contrast dynamic series. Contrast-
enhanced images were acquired at 0.5, 1.5, 2.5, 3.5, 4.5, and
5.5 minutes after the contrast injection. We used the images
from 0.5 minutes after contrast injection. The dataset com-
prises 110 breast cancer patients, of which 88 were used
for the training set and 22 for the test set. During train-
ing, the 3D patch volume was cropped from the center of
the tumor mask and patch volume size of 112 × 112 × 96
with nonzero normalization (normalization excluding zero
values, see Monai 3 framework) for MRI images was em-
ployed.
Brain: We utilize The Brain Tumor Segmentation Chal-
lenge 2021 (BraTS 2021) dataset [5, 6, 42], which includes
multimodal MRI scans such as T1-weighted (T1), contrast-
enhanced T1-weighted (T1ce), T2-weighted (T2), and Fluid
Attenuated Inversion Recovery (FLAIR). Among these,
T1ce, a modality enhanced with contrast agents to better

3https://monai.io/

visualize tumors, was employed in our study. From the
BraTS 2021 training set, we utilized data from 1204 out
of 1251 subjects, allocating 1000 for training and 204 for
testing. During training, 3D patch volumes were centered
around the enhancing-tumor mask, with a patch volume size
of 112× 112× 96 with nonzero normalization was applied
to the MRI images.

B. Implementation Details

B.1. Training Details

The network was trained using the Adam [34] optimizer
with a learning rate set to 5 × 10−6. The training was
conducted on four A100 80GB GPUs with a batch size of
one per GPU. The model was built using PyTorch version
1.13.1.

B.2. Comparison Methods

B.2.1 GAN-based Model.

The GAN-based model is adapted by modifying the 3D
image translation model Ea-GAN [75] (based on pix2pix
[25]), with the addition of cross-attention. The model ar-
chitecture, based on the UNet [52] structure, is specified in
Table A.

Stream Cross Attn Act. Conv. Norm. Out ch.

In C 64

DownBlock LeakyReLU C IN [128,256]

DownBlock ✓ LeakyReLU C IN [256,512]

UPBlock ✓ ReLU CT IN [512, 256]

UPBlock ReLU CT IN [256,128]

Out ReLU CT Tanh 1

Table A. Details of GAN-based Model. C is the convolution layer
and CT is the convolution transpose layer with 4×4×4 kernel, 2×
2×2 stride, and 1×1×1 padding. IN is the instance normalization
layer. The Out layer uses tanh as the activation function to generate
the final output.

B.2.2 Latent Diffusion Model.

LDM [51] is adapted to a 3D format from its original
method for comparison. LDM consists of two components:
a pretrained VQGAN [15] and a DDPM [20]. The detailed
structure of this model is outlined in Table B. During train-
ing, the number of time steps for the diffusion process was
set to 1000. In the inference stage, the DDIM [60] method
was employed, utilizing 200 sampling steps.
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Table B. Model structural details of LDM and BBDM used for the tumor texture generation task. |Z| represents codebook size in the latent
space.

Model z-shape |Z| Training Steps Noise schedule Channel Multiplier Channels Model Size

LDM-f2 56× 56× 48× 2 2048 1000 linear [1,4,8] 128 658.32M
BBDM-f2 56× 56× 48× 2 2048 1000 linear [1,4,8] 128 681.00M

Table C. Model structure details of the GigaGAN used for the tumor shape generation task.

Model z dim w dim G Channels D Channels G Attention Resolution D Attention Resolution Attention Type

Shape 24 128 512 512 512 [6,12] [6,12] self + cross
Shape 24→96 128 512 512 512 [12,24] [12,24] self + cross

Table D. Hyperparameters of the Exponential Moving Average (EMA) and ReduceLROnPlateau learning rate scheduler used in the training
process.

EMA Parameters LR Scheduler Parameters

Model Start Step Decay Update Interval Max lr Min lr Factor patience Cool Down Threshold

BBDM-f2 30000 0.995 8 5.0e-6 5.0e-7 0.5 3000 3000 1.0e-4

B.3. Network hyperparameters

B.3.1 Tumor Shape Generator.

The Tumor Shape Generator is based on GigaGAN [28],
which has shown successful results in generating images
from text in 2D natural images. This generator adapts Gi-
gaGAN to a 3D format and uses a shape feature-to-image
approach to create tumor masks. Additionally, the Tu-
mor Shape Generator employs cascaded generation pro-
cesses where images are initially generated at a resolution
of 24× 24× 24 and then upsampled to 96× 96× 96. De-
tailed information about its structure can be found in Table
C.

B.3.2 Tumor Texture Generator.

The Tumor Texture Generator is based on BBDM [37] and
has been modified for 3D application. This generator com-
prises two stages: a pretrained VQGAN and a BBDM.
The detailed structure of the model is specified in Table
B. During the training phase, the number of time steps for
the Brownian Bridge was established at 1000, whereas, in
the inference stage, 200 sampling steps were utilized. The
training parameters for BBDM are specified in Table D.

C. Radiomics Features
In our study, we extracted radiomics [2] features using

PyRadiomics 4 [67]. We obtained shape, histogram, and
texture features for model training, and the details of each
feature are described in the subsection. Additionally, most
feature definitions used in this study are provided in a Zwa-
nenburg et al [80]. The features used are specified in Table

4https://pyradiomics.readthedocs.io/

E. Additionally, Figure B depicts the correlation matrix of
each feature to illustrate the relationships between them.

C.1. Shape feature

For our Tumor Shape Generation task, we utilized a total
of 16 shape features for each type of ROI. Shape features
quantitatively represent the physical form and structure of
the ROI. These morphological characteristics, such as the
size, shape, and orientation of tumors, are analyzed for di-
agnosing diseases and evaluating prognoses.

The main shape features include:

• Volume: Measures the overall volume of the tumor.

• Surface Area: Measures the surface area of the tumor.

• Sphericity: Indicates the ratio of the tumor’s length
and width and thus reflects how close the tumor is to
being spherical.

During the experiment to manipulate tumor shape, we
focused on changing the volume and sphericity. Volume is
just the sum of voxels in mm. Sphericity is made of two
components, volume and surface area. Thus, we manipu-
lated volume and surface area to adjust the two features.
Other shaped features that depended on volume and surface
area were adjusted accordingly.

C.2. Texture feature

For our tumor texture generation task, we utilized a total
of 74 features for each type of ROI, which included 18 his-
togram features, 24 GLCM features, 16 GLSZM features,
and 16 GLRLM features. Detailed descriptions of each fea-
ture are provided in the subsections below.

https://pyradiomics.readthedocs.io/


Table E. Radiomics features used in our study. There are 16 shape, 18 histogram, 24 GLCM, 16 GLSZM, and 16 GLRLM features.
The tumor shape generator utilizes 16 shape features for each region of interest (ROI) type, while the tumor texture generator employs 74
texture features for each ROI type.

Shape Histogram GLCM GLSZM GLRLM
Mesh Volume Energy Autocorrelation Small Area Emphasis Short Run Emphasis
Surface Area Entropy Joint Average Large Area Emphasis Long Run Emphasis

Surface Area to Volume ratio Minimum Cluster Prominence Gray Level Non-Uniformity Gray Level Non-Uniformity
Sphericity Maximum Cluster Shade Gray Level Non-Uniformity Normalized Gray Level Non-Uniformity Normalized

Compactness 1 Mean Cluster Tendency Size-Zone Non-Uniformity Run Length Non-Uniformity
Compactness 2 Median Contrast Size-Zone Non-Uniformity Normalized Run Length Non-Uniformity Normalized

Spherical Disproportion 10th percentile Correlation Zone Percentage Run Percentage
Maximum 3D diameter 90th percentile Difference Average Gray Level Variance Gray Level Variance

Maximum 2D diameter (Slice) Interquartile Range Difference Entropy Zone Variance Run Variance
Maximum 2D diameter (Column) Range Difference Variance Zone Entropy Run Entropy

Maximum 2D diameter (Row) Mean Absolute Deviation Joint Energy Low Gray Level Zone Emphasis Low Gray Level Run Emphasis
Major Axis Length Robust Mean Absolute Deviation Joint Entropy High Gray Level Zone Emphasis High Gray Level Run Emphasis
Minor Axis Length Root Mean Squared Informational Measure of Correlation 1 Small Area Low Gray Level Emphasis Short Run Low Gray Level Emphasis
Least Axis Length Standard Deviation Informational Measure of Correlation 2 Small Area High Gray Level Emphasis Short Run High Gray Level Emphasis

Elongation Skewness Inverse Difference Moment Large Area Low Gray Level Emphasis Long Run Low Gray Level Emphasis
Flatness Kurtosis Maximal Correlation Coefficient Large Area High Gray Level Emphasis Long Run High Gray Level Emphasis

Variance Inverse Difference
Uniformity Inverse Difference Normalized

Inverse Difference Moment Normalized
Inverse Variance

Maximum Probability
Sum Average
Sum Entropy

Sum of Squares

Histogram: Histogram features, also known as first-order
features, are derived from the distribution of pixel or voxel
intensities within the ROI. These features provide valuable
insights into the texture of the tissue by analyzing the inten-
sity histogram of the ROI.

The main histogram features include:

• Median: The middle-intensity value when all values
are sorted.

• Skewness: The asymmetry in the intensity distribution.

• Energy: The sum of squared intensities, representing
the magnitude of voxel values.

• Entropy: The randomness or complexity of the inten-
sity distribution.

Gray Level Co-occurrence Matrix (GLCM): GLCM is a
method used in image processing to examine the texture of
an image by assessing how often pairs of pixels with spe-
cific values and in a specified spatial relationship occur in
an image, creating a GLCM, and then extracting statistical
measures from this matrix.

The main GLCM features include:

• Contrast: Measures the local variations in the GLCM.

• Correlation: Assesses how correlated a pixel is to its
neighbors.

• Inverse Difference Moment (or Homogeneity): Mea-
sures the closeness of the distribution of elements in
the GLCM to the GLCM diagonal.

Gray Level Size Zone Matrix (GLSZM): GLSZM is a
method used in radiomics for texture analysis, particularly
focusing on the size and distribution of continuous zones
with the same gray level intensity in an image. GLSZM
provides a way to quantify patterns and structures in an im-
age that are not captured by first-order statistics or other
texture matrices like the GLCM. A zone in GLSZM refers
to a group of connected pixels that have the same gray level
intensity.

The main GLSZM features include:

• Small Area Emphasis: Focuses on the distribution of
small size zones.

• Large Area Emphasis: Highlights the presence of large
size zones.

• Zone Percentage: The total number of zones relative
to the size of the ROI, indicating textural uniformity.

• Low Gray Level Zone Emphasis: Reflects the propor-
tion of zones with lower gray level values.

• High Gray Level Zone Emphasis: Indicates the pres-
ence of zones with higher gray level values.

Gray Level Run Length Matrix (GLRLM): GLRLM fo-
cuses on examining the length and directionality of contin-
uous runs of pixels with the same gray level intensity in an
image, thus providing important information about the tex-
ture and structural patterns. A run in GLRLM is defined as
a set of consecutive, collinear pixels having the same gray
level intensity. The length of a run is the number of pixels
in this set.

The main GLRLM features include:



• Short Run Emphasis: Measures the distribution of
short runs, indicating fine textural patterns.

• Long Run Emphasis: Highlights long runs, suggesting
coarser textures.

• Run Length Nonuniformity: Quantifies the variability
of run lengths, with higher values indicating more het-
erogeneous textures.

• Gray Level nuniformity: Measures the variability of
gray levels in the runs.

D. Additional Results
To demonstrate the effectiveness of our proposed method

in simulations, we attempted to generate large tumors,
which are rare in clinical settings, This process is depicted
in Figure A. Cases with such large tumors are unusual in
medical imaging and difficult to find data. Our results prove
that we can generate these rare samples. Furthermore, not
only can we create hard-to-find samples, but we can also
apply our method to simulate the growth of tumors. We an-
ticipate this will contribute to prognostic research studies.
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Figure A. Results of generating rare samples.

E. Future works
Medical imaging tends to be sensitive to parameter vari-

ations across different acquisition sites, which could lead
to potential inconsistencies in extracting intensity-sensitive
radiomics features, because minor alterations may result in
significantly different feature values. This presents a chal-
lenge when attempting to apply the process across diverse
domains and datasets simultaneously. For example, diffi-
culties arise not only between CT and MRI but also across
datasets from different anatomical organs like breast and
brain. Advancements in research, in tandem with domain
normalization for extracting and standardized radiomics

features within a unified space, could pave the way for sub-
stantial progress.

F. Training and Inference Process
The training and inference processes of the texture gen-

erator involve scenarios where texture features are either
provided (for generating tumors) or not provided (for gen-
erating normal tissue). During the training of non-tumor re-
gions, an area that does not overlap with the tumor region is
randomly chosen for masking. Subsequently, this masked
area is reconstructed and utilized in training. These steps
are summarized in Algorithm 1.

For sampling a normal image, the intended area for
restoration to its normal state is masked, followed by a dif-
fusion process to derive the normal image. This method is
detailed in Algorithm 2. When sampling a tumor image, a
mask is generated with specific shape features using a shape
generator. This mask is applied to the intended area for
tumor generation. A diffusion process is then carried out,
conditioned on the texture features, to produce the tumor
image. This method is detailed in Algorithm 3.



Figure B. Radiomcis feature correlation matrix extracted from the tumor region of a breast MRI. A higher positive correlation between
features approaches 1, a higher negative correlation approaches -1, and a lower correlation approaches 0.



Algorithm 1 Texture generator training loop with image I , mask M , radiomics texture feature rtx, and VQGAN encoder E
1: repeat
2: if Training for Tumor then
3: IM ← I ⊙M ▷ Masking image with tumor mask
4: else
5: M ′ ← Shift(M) ▷ Shift mask position without overlapping tumor
6: IM ← I ⊙M ′ ▷ Masking image with tumor mask
7: rtx ← None ▷ Initialize radiomics texture feature to none
8: end if
9: x0 = E(I),y = E(IM ) ▷ Image compression with VQGAN encoder

10: x0 ∼ q(x0),y ∼ q(y)
11: timestep t ∼ Uniform(1, ..., T )
12: Gaussian noise ϵ ∼ N (0, I)
13: Forward diffusionxt = (1−mt)x0 +mty +

√
δtϵ

14: Take gradient descent step on
15: ▽θ||mt(y − x0) +

√
δtϵ− ϵθ(xt, t, rtx)||2

16: until converged

Algorithm 2 Normal image sampling with VQGAN decoder D
1: IM ← I ⊙M ▷ Masking image with tumor mask
2: y = E(IM ) ▷ Image compression with VQGAN encoder
3: xT = y ∼ q(y) ▷ Sample conditional input
4: for t = T, ..., 1 do
5: z ∼ N (0, I) if t > 1, else z = 0

6: xt−1 = cxtxt + cyty − cϵtϵθ(xt, t) +
√

δ̃tz
7: end for
8: return D(x0) ▷ Reconstruction with VQGAN decoder

Algorithm 3 Tumor image sampling with shape generator G and radiomics shape feature rsh

1: z ∼ N (0, I)
2: M = G(z, rsh) ▷ Generate tumor mask with shape feature
3: IM ← I ⊙M ▷ Masking image with tumor mask
4: y = E(IM) ▷ Image compression with VQGAN encoder
5: xT = y ∼ q(y) ▷ Sample conditional input
6: for t = T, ..., 1 do
7: z ∼ N (0, I) if t > 1, else z = 0

8: xt−1 = cxtxt + cyty − cϵtϵθ(xt, t, rtx) +
√

δ̃tz
9: end for

10: return D(x0) ▷ Reconstruction with VQGAN decoder
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