
7. Proofs for the Theorem

In this section, we show the proof for the proposed equations in the main paper;
First, the following equation holds when �f = 1, 8f 2 Fl [ Fh:
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�fL2,f (I1, I2). (9)
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We use the following identical equation, which holds for 8x, y, z, w 2 R;
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We can obtain the following;
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1 · L2,f (I1, I2).

Second, When the distributions of pixel-wise differences between I1 and I2 are i.i.d., and follow N (µ,�2) with µ t 0, the following
equation holds when �f = 1, 8f 2 Fl [ Fh:

4 logE[L1(I1, I2)] + C =
X

f2 Fl [ Fh

�f logE[L1,f (I1, I2)], (10)

where C is a constant.



Proof. Similar with proving equation 9, we can derive followings;
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Using ci,j ⇠ N (µ,�2), we can obtain followings:
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Figure 8. Comparison of L1 of the wavelet coefficients. We plot
the average L1 of each wavelet coefficient between CelebA-HQ
test images and corresponding inverted images by various state-
of-the-art inversion models. Due to the significant gap between
L1,LL and the rest (about 20 times in linear scale), we display
the losses with the logarithmic scale for better visualization. In
contrast to other high-rate baseline inversion methods, e.g., Hy-
perStyle and HFGI, WINE notably reduces distortion on high-
frequency sub-bands.

Similar to L2, L1 seems a fair loss without the frequency
bias, which reflects L1,f2 Fl [ Fh

with same weights. How-
ever, as shown in Figure 8, we empirically find that L1,LL is
around 20 times larger than L1,f2 Fh

in case of HyperStyle and
HFGI. This leads to the biased training, which results in an appar-
ent decrease of L1,LL, but almost no gain, or even increment of
L1,f2 Fh

, compared to state-of-the-art low-rate inversion method,
i.e., ReStyle. Consequently, we argue that L1 contains the low-
frequency bias, and needs the wavelet loss to avoid it.

7.1. Information in Sub-band of Images
In Section 3.2, we designed the multi-level wavelet loss to

cover broader frequency ranges than fnyq/2 ⇠ fnyq . In Figure
9, we show the results of the inverse wavelet transform by omit-
ting the wavelet coefficients between fnyq/2 ⇠ fnyq (Config A),
fnyq/2

2 ⇠ fnyq/2 (Config B), and fnyq/2
3 ⇠ fnyq/2

2 (Con-
fig C). Though A removes the highest frequency sub-bands, i.e.,
fnyq/2⇠ fnyq , among all configs, we cannot find visible degrada-
tion of image details. In other words, information in the sub-band
fnyq/2 ⇠ fnyq is mostly higher than the visible image details.
Since the firstly proposed wavelet loss (Equation 3 of the main pa-
per) only covers the sub-band fnyq/2 ⇠ fnyq , we should extend
the range of sub-bands to effectively preserve the visible details.

A B C D

Figure 9. Inverse wavelet transform results by omitting vari-
ous wavelet sub-bands. To check the qualitative image details
in each sub-band, we remove the wavelet coefficients between
fnyq/2 ⇠ fnyq (Config A), fnyq/2

2 ⇠ fnyq/2 (Config B), and
fnyq/2

3 ⇠ fnyq/2
2 (Config C). From A to B, severe degradation

of visible image details does not occur. However, for B to C or C
to D, the majority of image details are degraded.

Consequently, we propose a K-level wavelet loss, which enables
covering the sub-band fnyq/2

K ⇠ fnyq .

8. Generator Training with Spectral Loss
Previous works [9,15,34] propose an objective function to pre-

cisely learn the frequency distribution of the training data, which
we comprehensively named as spectral loss. [15] designed a spec-
tral loss function that measures the distance between fake and real
images in the frequency domain that captures both amplitude and
phase information. [9] proposed a spectral loss that measures the
binary cross entropy between the azimuthal integration over the
power spectrum of fake and real images. [34] used a simple L2

loss between the logarithm of the azimuthal average over power
spectrum in normalized polar coordinates, i.e. reduced spectrum,
of fake and real images. We adopted the spectral loss term of [34]
for our experiment :

LS =
1

H/
p
2

H/
p
2�1X

k=0

k log (S̃(G(z)))[k]� log (S̃(I))[k]k22,

(11)
where S̃ is the reduced spectrum, G(z) is the generated image,
and I is the ground truth real image.



(e) SWAGAN with spectral loss(a) Ground Truth (d) SWAGAN(c) StyleGAN2 with spectral loss(b) StyleGAN2

Figure 10. Regression (top row) and spectral density plot (bottom row) of ground truth image and generated images trained
with/without additional spectral loss. Here, we used the spectral loss introduced in [34]. For both StyleGAN2 and SWAGAN generators,
the additional spectral loss induced artifacts to coercively match the frequency distribution. We recommend you zoom in to carefully
observe the reconstructed details.

Here, we conducted a single-image reconstruction task, which
is widely done [11, 34] to investigate the effectiveness of explicit
frequency matching in refining high-fidelity details. For Style-
GAN2 [19] and SWAGAN [11] generator, we used the latent opti-
mization [18] method to reconstruct a single image, each with and
without the spectral loss. All images are generated to resolution
512 ⇥ 512, with the weight of spectrum loss ⇥0.1 of the original
L2 loss.

Figure 10 shows the reconstructed images and spectral density
plots for each case. As seen in Figure 10(a), the spectrum of a
natural image follows an exponential decay. Using L2 singularly
made both StyleGAN2 and SWAGAN generators overfit to the
mostly existing low-frequency distribution. (b) StyleGAN2 strug-
gled to learn the high-fidelity details, creating an unrealistic image.
(d) SWAGAN was capable of fitting most of the high-frequency
parts, except created some excessive high-frequency noise due to
checkerboard patterns. Though utilizing the spectral loss for both
generators (c,e) exquisitely matched all frequency distributions,
qualitative results were degraded. Matching the frequency induced
unwanted artifacts to the images, and caused the degradation. Due
to the absence of the spatial information, the loss based on the
spectral density inherently cannot reconstruct high-frequency de-
tails. Comparably, our wavelet loss minimizes the L1 distance of
high-frequency bands in the spatial frequency domain, restoring
meaningful high-fidelity features.

9. Experimental Details
9.1. Training Details

In our experiments, we implement our experiments based on
the pytorch-version code 2 for SWAGAN [11]. We converted
the weights of pre-trained SWAGAN generator checkpoint from
the official TensorFlow code3 to pytorch version. We trained our
model on a single GPU and took only 6 hours for the valida-
tion loss to saturate, whereas other StyleGAN2-based baselines
required more than 2 days of training time.

2https://github.com/rosinality/stylegan2-pytorch
3https://github.com/rinongal/swagan

�wave,ADA 0 0.01 0.05 0.1 0.5

L2 # 0.024 0.017 0.15 0.011 0.021
L1, wave # 0.274 0.249 0.243 0.230 0.248

SSIM " 0.717 0.724 0.730 0.753 0.719

Table 3. Quantitative comparison with various wavelet loss ratio.

Here, we explain the details of our reconstruction loss terms:
L2, Lid, and LLPIPS . We leverage L2, as it is most effective in
keeping the generated image similar to the original image pixel-
wise. Lid is an identity loss defined as:

Lid = 1� < R(G0(w)), R(I) >, (12)

where R is the pre-trained ArcFace [8] model, and I is the ground
truth image. Lid minimizes the cosine distance between two face
images to preserve the identity. LPIPS [42] enhances the percep-
tual quality of the image by minimizing the distance on the fea-
ture space of ImageNet [7] pre-trained network. For training, we
used weights �L2=1, �id=0.1, �LPIPS=0.8, respectively, which
follows the widely adopted experimental setups in previous GAN
inversion methods.

In Table 3, we show the effect of our proposed wavelet loss
via adjusting the weight �wave,ADA respective to the weight �L1

in Eq. 6 of the main paper. Reminder that the ADA loss aims
to minimize the discrepancy in residual wavelet features. Increas-
ing the weight �wave,ADA up to 0.1 shows that incorporating the
wavelet loss effectively enhances the reconstruction of image-wise
details, particularly in high-frequency regions. However, exceed-
ing a weight of 0.1 leads to a decline in performance, as most
image information resides in the low-frequency sub-band. In gen-
eral, we applied balanced weights that effectively reconstruct high-
frequency sub-bands without compromising the generation of low-
frequency sub-bands.

9.2. Dataset Description
In this section, we describe the datasets used for experiments

in the main paper.
Flickr-Faces-HQ (FFHQ) dataset. Our model and all base-

lines are trained with FFHQ [18], a well-aligned human face



dataset with 70,000 images of resolution 1024 ⇥ 1024. FFHQ
dataset is widely used for training various unconditional genera-
tors [17–19], and GAN inversion models [3, 4, 27, 32, 37, 39]. All
of the baselines we used in the paper use the FFHQ dataset for
training, which enables a fair comparison.

CelebA-HQ dataset. CelebA-HQ dataset contains 30,000 hu-
man facial images of resolution 1024 ⇥ 1024, together with the
segmentation masks. Among 30,000 images, around 2,800 im-
ages are denoted as the test dataset. We use the official split for
the test dataset, and evaluate every baseline and our model with all
images in the test dataset.

Animal-Faces-HQ (AFHQ) dataset. AFHQ [5] dataset con-
tains 15,000 high-quality images of cats, dogs, and wildlife ani-
mals at 512 × 512 resolution. We used 5000 images of wild ani-
mals for training WINE, and the test-set for evaluation.

9.3. Baseline Descriptions
In this section, we describe the existing GAN inversion base-

lines, which we used for comparison in Section 4. We exclude
the model which needs image-wise optimization, such as Im-
age2StyleGAN [1] or Pivotal Tuning [33].

pSp pixel2Style2pixel (pSp) adopts pyramid [22] network for
the encoder-based GAN inversion. pSp achieves the state-of-
the-art performance among encoder-based inversion models at the
time. Moreover, pSp shows the various adaptation of the encoder
model to the various tasks using StyleGAN, such as image inpaint-
ing, face frontalization, or super-resolution.

e4e encoder4editing (e4e) proposes the existence of the trade-
off between distortion and the perception-editability of the image
inversion. In the other words, e4e proposes that the existing GAN
inversion models which focus on lowering distortion, sacrifice the
perceptual quality of inverted images, and the robustness on the
editing scenario. e4e suggests that maintaining the latent close
to the original StyleGAN latent space, i.e., W , enables the in-
verted image to have high perceptual quality and editability. To
this end, e4e proposes additional training loss terms to keep the
latent close to W space. Though distortion of pSp is lower than
e4e, e4e shows apparently higher perceptual quality and editabilty
than pSp.

ReStyle ReStyle suggests that a single feed-forward operation
of existing encoder-based GAN inversion models, i.e., pSp and
e4e, is not enough to utilize every detail in the image. To over-
come this, ReStyle proposes an iterative refinement scheme, which
infers the latent with feed-forward-based iterative calculation. The
lowest distortion that Restyle achieves among encoder-based GAN
inversion models shows the effectiveness of the iterative refine-
ment scheme. Moreover, the iterative refinement scheme can be
adapted to both pSp and e4e, which enables constructing mod-
els that have strengths in lowering distortion, or high perceptual
quality-editability, respectively. To the best of our knowledge,
ReStyle

pSp
achieves the lowest distortion among encoder-based

models which do not use generator-tuning method4. Since we uti-
lize baselines that achieve lower distortion than ReStyle

pSp
, i.e.,

HyperStyle and HFGI, we only use ReStyle
e4e to evaluate its high

editability.

4IntereStyle [27] achieves lower distortion on the interest region than
ReStyle

pSp
, but not for the whole image region.

HyperStyle To make a further improvement from ReStyle,
Pivotal Tuning [33] uses the input-wise generator tuning. How-
ever, this is extremely time-consuming, and inconvenient in that it
requires separate generators per every input image. To overcome
this, HyperStyle adopts HyperNetwork [13], which enables tun-
ing the convolutional weights of pre-trained StyleGAN only with
the feed-forward calculation. Starting from the latent obtained by
e4e, HyperStyle iteratively refines the generator to reconstruct the
original image with the fixed latent. HyperStyle achieves the low-
est distortion among encoder-based GAN inversion models at the
time.

HFGI HFGI points out the limitation of the low-rate inversion
methods and argues that encoders should adopt larger dimensions
of tensors to transfer high-fidelity image-wise details. To achieve
this, HFGI adapts feature fusion, which enables mixing the origi-
nal StyleGAN feature with the feature obtained by the image-wise
details.

StyleRes StyleRes handles the trade-off between the recon-
struction and editing quality of real images. In order to obtain
high-quality editing in high-rate latent spaces, StyleRes learns
residual features in higher latent codes and how to transform
these residual features to adapt to latent code manipulations.
StyleRes achieves the lowest distortion among every GAN inver-
sion method, except our model.



Ground Truth (a) (b) (c) (d)
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Figure 11. Qualitative Comparison of WINE Inversion with Fusion in Different Layers. Each image represents the inversion results
for each scenario in Table 5. The first row (a)-(d) displays inverted images with feature fusion in a single layer `f = 7, with wavelet fusion
in layer `w = 7, `w = 9, `w = 11, and `w = 13, respectively. The second row (e)-(h) displays inverted images with feature fusion in
multi-layers `f = 7 and 9, with wavelet fusion in layer `w = 7, `w = 9, `w = 11, and `w = 13, respectively. We recommend you zoom
in for a careful look into the details.

pSp e4e ReStyle HS HFGI StyleRes Ours

Smile 21.66 21.51 13.87 15.65 15.17 17.03 14.50
Gender 26.45 29.31 26.14 19.92 19.24 19.90 19.46
Lipstick 40.88 40.27 34.27 33.45 31.30 28.53 31.21

Average # 29.66 30.36 24.76 23.01 21.91 21.82 21.72

Table 4. Quantitative comparison on editability.

9.4. Quantitative Comparison on Editability
Recently, StyleRes [30] proposed a method to quantitatively mea-
sure editability using FID (Frechet Inception Distance), based
on image distributions from the CelebA-HQ annotation dataset.
Specifically, after selecting a feature to edit, the Inception network
output distribution of real images that possess the desired feature
(positive) is computed. Then, real images that do not have the fea-
ture (negative) are edited, and the Inception network output dis-
tribution of the resulting fake images is obtained. The underlying
idea is that the more realistic the edited images are and the bet-
ter the feature is reflected, the smaller the distance between these
two distributions will be. In Table 4, we compared FID editability
related to three features, e.g., smile, gender, and lipstick. In two
features out of three, ours showed the lowest FID and the second
lowest in the rest feature. Overall, we compared the average FID,
where ours showed the lowest score out of every baseline.

10. Ablation Studies
10.1. Choice of Fusion Layer

We additionally provide both quantitative and qualitative abla-
tion results for the inversion performance of WINE with fusion in
different layers. Note that in our main experiment, we apply fea-
ture fusion in layers `f = 7 and 9, and wavelet fusion in layer
`w = 11. Each layer corresponds to a fusion of spatial features

with resolution 64 ⇥ 64 and 128 ⇥ 128, and wavelet coefficients
of dimension w 2 R12⇥128⇥128

.

From the quantitative results in Table 5, we observed that the
feature fusion on two layers `f = 7 and 9 showed better re-
construction accuracy than on a single layer `f = 7. Addition-
ally, wavelet fusion in lower layers (`w < 11) was not sufficient
enough to preserve the high-fidelity details, especially in the high-
frequency region i.e. Lwave. Wavelet fusion in the higher layer
(`w = 13) also degraded the inversion performance, which can be
more carefully observed in Figure 11.

Figure 11 shows the inverted images for each scenario in Ta-
ble 5. It is noticeable that fusion in a single layer (a)-(d) failed to
retain high-frequency details like the hand and hair texture. Com-
parably, in the case of multi-layer feature fusion (e)-(h), inverted
images reconstructed more high-frequency details. Yet, wavelet
fusion in the lower layers (e), (g), and higher layers (h) gener-
ated unwanted distortions, which eventually degraded the image
fidelity. Overall, our scenario (g) empirically showed the most
promising reconstruction quality, generating realistic images with
the least distortion.

10.2. Design of Fusion Methods
To prove the effectiveness of the wavelet fusion, we compared

the performance of WINE with the model which uses the feature
fusion, proposed in HFGI [39], instead of the wavelet fusion in the
same resolution layer. In Table 6, we compared the performance of
models with the following four settings: The original HFGI which
uses feature fusion at `f = 7, HFGI with additional feature fusion
at `f = 9 and 11, WINE with the feature fusion at `f = 7, 9,
and 11, and the original WINE which uses the feature fusion at
`f = 7 and 9, and the wavelet fusion at `w = 11. First, sim-
ply adding the feature fusion to the higher layer is not helpful for
improving the model. If we change it to the WINE method, i.e.,
change the generator and add the wavelet loss, the performance



Table 5. Ablation of the Fusion Layers for WINE. We compared the inversion performance of WINE with feature and wavelet fusion in
different layers. Feature fusion on layers `f = 7 and 9, and wavelet fusion on layer `w = 11 consistently showed the highest fidelity and
reconstruction quality among all scenarios.

Feature Fusion Wavelet Fusion L2 # Lwave # LPIPS # SSIM " ID sim "

`f = 7

`w = 7 0.028 0.359 0.365 0.667 0.796
`w = 9 0.026 0.356 0.362 0.701 0.830
`w = 11 0.026 0.325 0.364 0.727 0.847
`w = 13 0.024 0.314 0.366 0.727 0.845

`f = 7 and 9

`w = 7 0.020 0.327 0.346 0.711 0.849
`w = 9 0.016 0.289 0.330 0.724 0.880
`w = 11 0.011 0.230 0.277 0.753 0.906
`w = 13 0.020 0.307 0.342 0.722 0.861

Table 6. Ablation of the Fusion Methods for WINE. We compared the inversion performance of WINE with the model which uses
wavelet fusion instead of feature fusion. Though changing all the fusion methods with the feature fusion achieves better results than HFGI,
still it shows a big performance degradation compared to WINE.

Model Fusion Layers L2 # Lwave # SSIM " ID sim "

HFGI `f = 7 0.023 0.351 0.661 0.864
`f = 7, 9, 11 0.036 0.377 0.704 0.795

WINE `f = 7, 9, 11 0.017 0.302 0.699 0.873
`f = 7, 9 and `w = 11 0.011 0.230 0.753 0.906

significantly improves. After changing the feature fusion at the
11th layer, the performance remarkably improved and achieved
state-of-the-art results on various metrics.

11. Limitation and Future Work
Our proposed WINE excels in producing high-quality images by
efficiently transferring the residual high-frequency information to
the generator. However, we only provided empirical results with
specifically SWAGAN, a wavelet-based StyleGAN as the genera-
tor. As our proposed wavelet fusion pertains to generators with in-
termediate wavelet coefficients, we can potentially generalize our
approach to other wavelet-based generators that provides inversion
and editing abilities. We will work on applying our method to the
inversion of wavelet-based diffusion models and other wavelet ex-
panded generators in the near future.
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