
Supplementary Materials for Robot Instance
Segmentation with Few Annotations for

Grasping

A. Technical details

Model The RISE framework begins with an image aug-
mentation step that feeds into a feature extractor followed
by an instance segmentation model, and ends at prediction
heads for class, bounding box, mask and instance associ-
ation. We use ResNet-50, ResNet-101 [15] and Swin-L
transformer [29] as backbones throughout our experiments,
followed by Deformable DETR [54] with 6 encoders and
decoders, width of 256 and 300 fixed instance queries, con-
verging on an FPN-like dynamic mask head (as in Seq-
Former [44]). In our evaluation, we measure the contribu-
tion of the proposed approach to Deformable DETR which
serves baseline, and all feature extractors are pretrained on
COCO instance segmentation, as is common in Instance
segmentation pretraining [58]. The proposed method in-
corporates a contrastive head (inspired by IDOL [45]) and
introduces instance bank, self-supervision branch for non-
labeled data, coupled prediction heads for stability (M2B)
and label matching strategy during training (MLM). These,
in aggregate, allow RISE to outperform both Deformable
DETR and SAM, even when these are trained on ×10 more
data (1% vs 10%).
Hyperparameters Recall from Sec. 3.1 and Sec. 3.3 that
the supervised loss Ls and unsupervised loss Lu (Eq. (1),
Eq. (5), respectively) are a combination of the class loss
Lcls, bounding-box loss Lbox weighted by λ1, and the mask
loss Lmask weighted by λ2. We set the loss weights to be
λ1 = 2.0, λ2 = 1.0. The total loss Ltotal (in Eq. (9))
combines the supervised loss Ls or unsupervised loss Lu

(depending on availability of label y), with association loss
Lembed weighted by λ3. Tab. 6 details an ablation of values
of λ3, showing that the Lembed contributes to performance,
with the best results attained forλ3 = 0.05.
Augmentation Strategy The input images are downsam-
pled and randomly cropped so that the longest side is at
most 600 pixels, and so that the shortest side is at least 480
pixels. Recall from Sec. 3.2 that the instance bank contains
object cutouts from the labeled portion of the dataset, in-
spired by [8]. We randomly insert K instances from the
instance bank into the image to produce the “before” im-
age x1 and apply weak augmentations (e.g. slight rotation,
translation, brightness etc.). However, we depart from pre-
vious approaches by having these K instances distributed
according to Beta(α = 0.5, β = 0.5), depicted in Fig. 5,
making it less likely for synthetically placed instances to
occlude actual objects in the image. In addition, we also
ensure that the K inserted instances don’t overlap with one
another beyond 85% since they form ground truth labels

Table 6. Ablation of weight λ3 applied to the sequence asso-
ciation loss Lembed described in Eq. (4). This evaluation uses
10% of ARMBench labels (90% treated as unlabeled data) and
the Swin-L as backbone. A value of λ3 = 0 corresponds to a
variant that ignores Lembed. The best performance is obtained for
λ3 = [0.05, 0.1].

λ3 AP AP50 AP75

0 74.7 84.9 75.9
0.02 74.4 84.5 75.6
0.05 74.9 85.2 76.0
0.1 74.5 83.8 76.2
0.5 74.3 84.2 75.3

during self-supervision. We then generate the “after” image
x2 by randomly adding more instances from the instance
bank, or alternatively removing (or transforming) already
inserted instances, followed by another round of weak aug-
mentations. The before and after frames serve toward learn-
ing through interaction, and we facilitate self-supervised
learning by strongly augmenting x1 to yield x3 and treat
xw = x1 and xs = x3 as an input a pair of weakly-
and strongly-augmented images. We employ this approach
in our evaluation of both ARMBench [35] and OCID [38]
without the needing to tune its parameters specific datasets.
Training. We train our model for 12, 000 iterations, us-
ing AdamW [31] optimizer with learning rate of 10−4, and
weight decay of 10−4 and lr scheduler of StepLR that steps
down an order of magnitude after 8, 000 iterations.

B. Prediction Matching
The model predicts up to 300 instance labels, boxes and

masks which are often far beyond the actual instance count
in a given image. In order to compute the loss between
valid predictions and ground-truth annotations, we com-
pute the bipartite cost matrix which measures the IoU of
each prediction against each ground-truth annotation (ei-
ther based on box IoU or using the Mask-to-Box method
detailed in Sec. 3.3). We then find the fitting assignment for
each ground-truth annotation by solving an Optimal Trans-
port (OT) Problem [10]. A similar approach described in
Sec. 3.2 serves toward computing Lembed which requires
positive and negative views of an instance. We introduce
a method inspired by IDOL [45], where the top-10 predic-
tion matches of each ground-truth annotation are treated as
positive views and the rest are considered negative views.
The impact of matching is evident in the ablation study in
Tab. 3 where we use either OT or a more standard approach
of using the top 0.7 IoU as positive and bottom 0.3 IoU as
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Figure 5. Two dimensional independent Beta(α = 0.5, β = 0.5)
distribution representing the spread of instance-bank objects in-
serted into unlabeled images. The distribution favors placing in-
serted objects at the periphery of the image, since most images
contain most of their information about their center (bright regions
denote low probability).

negative.
This flow is similarly applied during the self-supervision

phase, with the distinction of using pseudo- labels,
boxes and masks instead of manually annotated ground
truth. Here we also employ Multi-Label Matching (MLM,
Sec. 3.3) to allow the model to learn from multiple pseudo-
labels predicted from the weak augmentation xw. The im-
pact of MLM is demonstrated in Tab. 3 and inspired by
[2], where it further contributes to the framework’s perfor-
mance.

C. Thresholds

We use time-dependent thresholds [18, 53], whereby an
initial threshold value increases every 1000 training steps.
The class and mask thresholds start at γcls

t = γmask
t = 0.85

and peak at 0.98. For the Cascade approach (Sec. 3.3)
which combines a lenient threshold followed by a quantile
Qt described in Eq. (6). We set the initial class and mask
thresholds to be γcls

t = γmask
t = 0.5 and peak at 0.85. The

quantile Qt follows the schedule pt = a0 · (1− t/T) where
t is the training step, T denotes the total number of train-
ing steps, and a0 = 0.995 is the quantile base value. Upon
ranking the model’s predicted instances by their class score,
only the top pt are retained, and the rest are discarded.

Figure 6. Fine-tuned SAM (1% ARMBench data) showing many
fragmented masks and false positive artifacts.

D. Foundation Model Comparison
As an additional baseline we compare RISE with the

“Segment Anything” (SAM) foundation model [20], fine-
tuned on a subset of the ARMBench dataset. In Tab. 1 we
demonstrate that despite SAM’s unrivalled ability to seg-
ment anything, it is prone to over-segment and produce
mask artifacts, even after fine-tuning on a small portion of
domain-specific images. Fig. 6 shows an example where
SAM, fine-tuned on 1% of the data still struggles with ac-
curately discerning objects, resulting in fragmented and in-
complete object masks and mask predictions that target less
significant elements of the image (such as packaging fea-
tures, rivets and shadows). The numerous false positive pre-
dictions impact the overall performance.

E. Study of Cascade Threshold
We study the behavior of pseudo-label and pseudo-mask

Cascade filter strategy (Eq. (6)). We evaluate the per-
instance prediction score of the model using different base
values for the quantile Qt of the Cascade threshold. In
Fig. 7, each color band represent 1000 iterations. The fig-
ure shows that setting the base value of the quantile too low
would allow in more false-negatives as pseudo- labels and
masks. Alternatively, setting it too high would discard valu-
able predictions as they don’t meet the ranking requirement
of the qunatile. Following this evaluation we set the quantile
base value to a0 = 0.995, which leads to the most balanced
behavior of discarding false-positive predictions while al-
lowing through true-positives (even when their score would
be considered too low by a standard scheduled threshold).

F. Failure Cases
In both the supervised and self-supervised stages, we

randomly draw instance-bank objects and distribute them
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(a) a0 = 0.7
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(b) a0 = 0.9
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(c) a0 = 0.95
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(d) a0 = 0.99
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(e) a0 = 0.995

Figure 7. Confidence density over time using different quantile values for the cascade threshold (Eq. (6)). The x-axis represent the score
of all samples, the y-axis the valid instance-count (instance density), and the color band correspond to training iterations in increments of
1000. The cascade threshold applies both a time-dependent threshold (which tightens over time) and a time-dependent quantile Qt (which
loosens over time). The base quantile value a0 is detailed for each subfigure, showing that the best initial value for the quantile is 0.995.

in the image according to a 2d Beta(α, β) distribution
(Eq. (2)), and prevent object overlap that exceeds 85% by
resampling from the distribution in case of such overlap. In
the supervised phase, we also ensure that inserted objects
do not overlap existing (ground-truth) objects by more than
85%, whereas in the self-supervised phase, the Beta(α, β)
distribution (Eq. (2)) helps reduce the likelihood of inserted
memory-bank objects overlapping actual objects in the
image (since no ground-truth is available). Despite these
precautions, failure cases still occur, particularly at very
low annotation rates. Since our method incorporate noisy
pseudo–labels in low annotated data regime, we will follow
improvements in noisy spatial labels [13] for combating
with noise and improve pseudo–labels. Fig. 8 shows how
a model trained on 1% of the labeled data (99% treated
as unlabeled) accurately predicts the masks of all objects
in the “before” image x1 (and ignores the background).
However, in the “after” image x2 (post-interaction), which
contains an additionally inserted object (bottom row), the
model fails to produce masks for the occluded cardboard
box.

Acknowledgment: Bin illustrations in figure Fig. 2 are at-
tributed and modified from [1].



Figure 8. Failure cases. Mask prediction of a model trained on 1% of annotated data and 99% unlabeled (ResNet-50 backbone). The top
row shows that the model accurately predicts the three objects in the tote. The bottom row includes an additional item inserted from the
instance-bank, which partially overlaps several objects. Although the model correctly segments the inserted object, it completely misses
one occluded object.
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