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1. Limitations
While our method shows strong potential for generating

videos, its current demonstration is limited to face reenact-
ment using facial landmarks as the primary control signal.
One observed limitation is the preservation of head shape
attributes from the driving video, which can hinder precise
identity preservation. Future work could explore several
promising directions to address this and other limitations.
First, we can expand the types of guidance beyond facial
landmarks, incorporating segmentation maps, optical flow,
depth maps, and other modalities. Second, we can apply our
approach to diverse domains like image-to-video, inverse
problems, cinemagraphs, and special effects. To mitigate
head shape preservation, we plan to investigate mapping
landmarks to a canonical space and adjusting them based
on differences with the source image’s landmarks. Finally,
our method is currently limited to a single scene or shot,
but we envision using multiple or moving anchors to enable
multi-scene video generation.

2. Social Impact
We recognize the risks associated with our large-scale

human-face dataset sourced from YouTube, including but
not limited to privacy, copyright violations, potential mis-
use, and inherent biases. To mitigate these concerns and
potential harm, we implement strict access control measures
and a multi-faceted approach. Importantly, we only publish
links to public videos, which helps protect privacy, reduces
legal liability, and facilitates an easy opt-out mechanism.
Furthermore, we maintain strict control over dataset access
by enforcing a research-only license and limiting distribu-
tion to authorized researchers. We are committed to trans-
parency by publishing reports detailing our dataset’s com-
position, usage statistics, opt-out requests, and any detected
misuse attempts. We strive to balance research advance-
ment with ethical considerations, remaining adaptable to
evolving challenges in this domain.

3. Artistic Reenactment
We introduce an additional application: artistic reenact-

ment, which involves transferring facial expressions and
movements from a driving video to a target artistic portrait.

To address the domain gap between our curated training
data clips and the desired artistic domain, we incorporate
25,000 artistic images from the Artstation-Artistic-face-HQ
(AAHQ) [5] dataset into our training scheme. Geometric
transformations are applied to each sample to conceptualize
a series of video clips.

Interestingly, as demonstrated in Fig. 1 and Fig. 2, al-
though the geometric transformations do not include de-
tailed movement information, such as different poses or
eye closure, the model successfully learns to reenact artis-
tic video clips. This success is attributed to the integration
with real-world clips, which enables the model to effec-
tively bridge the gap between artistic and realistic domains.

4. Ablation Study

In this section, we conduct ablation studies using vari-
ous inference configurations for cross-identity reenactment
on our Records-Test-5K dataset. We evaluate the realism
of the generated outputs using the Fréchet Inception Dis-
tance (FID) [2] and assess motion transfer accuracy by ex-
tracting 478 XYZ facial landmarks from both the generated
and driving videos using MediaPipe [7]. The accuracy is
quantified by calculating the Mean Squared Error (MSE)
between corresponding points, denoted as LMSE. To mea-
sure scene consistency throughout the video, we compute
the minimum cosine similarity (CSIM) between the source
and generated embeddings using CLIP.

Table 1 summarizes the quantitative results across differ-
ent inference configurations. First, we examine the impact
of classifier-free guidance (CFG), which controls the influ-
ence of guidance on image generation. Interestingly, dis-
abling CFG in our model leads to better performance. We
then evaluate the effect of varying the number of timesteps
during generation, confirming that a sampling procedure
with 1000 steps yields the best results. Finally, we inves-
tigate the role of guidance during the sampling stage. Since
the model is trained with random condition dropout (with
a 10% probability) to support CFG, inference without any
guidance can generate realistic images, though they lack
correlation to the driving video or source image. When us-
ing only landmarks or only CLIP guidance, the model per-
forms poorly, as it was not trained for these scenarios. The
suggested configuration in the last row of the table achieves
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Figure 1. Artistic Reenactment. Results of the artistic reenactment process.

Figure 2. Artistic Reenactment. Additional results of the artistic reenactment process.

the best overall performance across all metrics.

5. Dataset Statistics

In this work, we introduce ReenactFaces-1M, a
large-scale, high-quality, and diverse video dataset.
ReenactFaces-1M comprises 1, 006, 257 video segments,
each with an average length of 3.29 seconds, totaling over
920 hours of footage. The dataset exhibits an average reso-
lution of 745 pixels, making it a valuable resource for var-
ious applications in video analysis and facial recognition
research. To further understand the characteristics of our
dataset, we provide an analysis of important data statistics:

• Figure 3 shows the distribution of clip durations in our
dataset, with an average duration of 3.29 seconds and a

standard deviation of 2.07 seconds.

• Figure 4 shows the distribution of clip HyperIQA [12]
scores in our dataset, with an average duration of 51.5
and a standard deviation of 10.72.

• Figure 5 shows the distribution of clip resolution in our
dataset, with an average duration of 745.1 and a standard
deviation of 247.8.

• Figure 6 depicts the distribution of the face height ratio
relative to the total clip height and the face width ratio
relative to the total clip width. The face width ratio has
a mean of 0.45 and a standard deviation of 0.05, while
the face height ratio has a mean of 0.53 and a standard
deviation of 0.07.
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Timesteps CFG Guidance FID LMSE CSIM
1000 1 CLIP+Landmarks 34.4 9.61 0.74
1000 2 CLIP+Landmarks 34.6 10.31 0.77
1000 4 CLIP+Landmarks 38.5 12.63 0.79
1000 8 CLIP+Landmarks 48.0 14.14 0.77
50 1 CLIP+Landmarks 36.6 12.34 0.70
100 1 CLIP+Landmarks 34.0 11.21 0.72
200 1 CLIP+Landmarks 34.3 10.82 0.73
400 1 CLIP+Landmarks 34.2 9.93 0.72
1000 1 CLIP+Landmarks 34.4 9.61 0.74
1000 1 None 67.8 582 0.46
1000 1 Landmarks 361 3268 0.43
1000 1 CLIP 287 1992 0.50
1000 1 CLIP+Landmarks 34.4 9.61 0.74

Table 1. Ablation Quantitative Results. Comparisons with vari-
ous inference configurations on the cross-identity reenactment us-
ing our Records-Test-5K dataset.
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Figure 3. Clip Duration. This histogram shows the distribution
of clip durations in our dataset, with an average duration of 3.29
seconds and a standard deviation of 2.07 seconds.
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Figure 4. Clip HyperIQA. This histogram shows the distribution
of clip HyperIQA scores in our dataset, with an average duration
of 51.5 and a standard deviation of 10.72.
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Figure 5. Clip Resolution. This histogram shows the distribution
of clip resolution in our dataset, with an average duration of 745.1
and a standard deviation of 247.8.
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Figure 6. Facial Ratio. The histogram depicts the distribution of
the face height ratio relative to the total clip height and the face
width ratio relative to the total clip width. The face width ratio has
a mean of 0.45 and a standard deviation of 0.05, while the face
height ratio has a mean of 0.53 and a standard deviation of 0.07.

6. Face Reenactment - Extended Results

6.1. Analysis of Scene Recognition

To assess the scene recognition capabilities of our ap-
proach, we analyzed both ArcFace and CLIP embeddings
of video frames. Figure 7 presents t-SNE visualizations of
these embeddings, where each point represents a frame and
its color corresponds to the video it belongs to. The ArcFace
embeddings are not as well-separated, failing to distinguish
between certain videos. In contrast, the CLIP embeddings
resulted in clear separation of clusters, indicating that they
effectively distinguish between different scenes and movies,
highlighting their potential for such tasks.

6.2. Additional Visual Results

To further illustrate the capabilities of our face reenact-
ment approach, we present a broader range of visual results
in Figures 8-12. These examples highlight the model’s abil-
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ArcFace CLIP

Figure 7. Scene Recognition. t-SNE 2D projection of ArcFace Embeddings (Left) and CLIP embeddings (Right).

ity to handle challenging conditions such as extreme poses
and varying facial attributes, while maintaining visual fi-
delity and temporal consistency. Additionally, Figure 13
highlights the model’s effectiveness in generating coher-
ent and extended video sequences, further demonstrating its
versatility and potential applications.

7. Additional Experimental Details

We train two base sDiT-XL models at a resolution of
256x256 pixels, each with a patch size of 2x2. These mod-
els are capable of generating sequences of 4 and 8 frames,
respectively. The mapping network consists of 4 residual
blocks, and we use standard weight initialization techniques
from ViT [1]. All models are trained with AdamW [6],
using default parameter values and a cosine learning rate
scheduler. The initial learning rates are set to 6.4 × 10−5

for the denoiser and 6.4× 10−6 for the mapping network.

For the VAE model, we use a pre-trained model from
Stable Diffusion [10]. The VAE encoder downscales the
spatial dimensions by a factor of x8 while producing a 4-
channel output for a 3-channel RGB input. We retain diffu-
sion hyperparameters from DiT [9], including tmax = 1000
and a learned sigma routine.

Our training loss function is a weighted MSE, designed
to prioritize accurate reconstruction of facial expressions,
specifically targeting facial landmarks around the mouth
and eyes. These expressive landmark pixels are assigned
a weight of (1 + λex), with λex set to 1, while other pixels
are weighted at 1.

All models are trained for 1 million steps using a global
batch size of 16 samples. We implement our models in Py-
torch [8] and train them using four Nvidia A100-SXM4-
80GB GPUs. The most compute-intensive model achieves
a training speed of approximately 1.8 iterations per second.
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Figure 8. Cross-identity Reenactment. Comparisons with the competing methods [3, 4, 11].
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Figure 9. Cross-identity Reenactment. Comparisons with the competing methods [3, 4, 11].
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Figure 10. Cross-identity Reenactment. Comparisons with the competing methods [3, 4, 11].
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Figure 11. Cross-identity Reenactment. Comparisons with the competing methods [3, 4, 11].
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Figure 12. Cross-identity Reenactment. Comparisons with the competing methods [3, 4, 11].
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Figure 13. Cross-identity Reenactment. Enabling Identity-Swapping in 24-Frame Video Clips.
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