
7. Supplementary

7.1. Dataset Details

We evaluate the performance of HEX across different
domains and levels of granularity. To assess the robust-
ness and versatility of HEX, we choose 15 diverse datasets
that span a wide range of scenarios that vary based on
size, diversity, granularity, and difficulty of the data set-
ting. These datasets include popular ones for benchmark-
ing such as CIFAR-100 [35], Cifar-10 [35], TinyImageNet-
200 [52], STL-10 [12], iNaturalist 2021 [49], and Ima-
geNet [15]. Additionally, our intent is to also conduct ex-
periments under conditions with significant class similar-
ity, which makes them more susceptible to local collapse in
their representations compared to standard datasets. There-
fore, we select nine fine-grained datasets including FGVC
Aircraft [39], Oxford 102 Flowers [41], Stanford Cars [14],
Stanford Dogs [30], Oxford Pets [43], NABirds [48], Cal-
tech 101 [19], Food 101 [5], and CUB-200-2011 [50]. A
description of each dataset is given in Table 12.

In addition to ImageNet, we include its subset,
ImageNet-100 [15], for comparative experiments.
ImageNet-100 introduces a smaller number of classes
than ImageNet and naturally has less class overlap. By
comparing datasets with similar data distribution condi-
tions, but differing only in the degree of class overlap, we
aim to observe how our method improves performance by
preventing local collapse.

7.2. Limitations of Algorithm

Despite the advantages of HEX, there are some potential
limitations. For example, in certain cases manual choosing
the thresholding parameter performs better than the adap-
tive strategy. Consequently, some type of hyperparameter
search would have to occur in these situations. Addition-
ally, our method seems to perform better in situations with
a higher degree of class overlap and complexity. There-
fore, performance benefits may not be as great within lower
complexity data settings. Furthermore, our algorithm relies
on the emergence of hierarchical structures during training.
However, it isn’t always clear from a human perspective
what the nature of a hierarchy can look like for certain appli-
cation domains. Further research into the nature of hierar-
chies in certain domains may be needed to fully understand
the meaning of hierarchical emergence in general.

7.3. Additional Training Details

7.3.1 Code Acknowledgement

We make use of the solo-learn codebase for all experiments
[13]. The link to their code can be found at this repository.
Our specific implementations will be released upon accep-
tance of the paper.

7.3.2 Specific SSL Method Details

In Table 6, we show all the hyperparameters associated with
each of the SSL algorithms highlighted in the results section
of our paper. The hyperparameters in the table are the ba-
sic hyperparameters that were associated with the solo-learn
codebase. However, these parameters change slightly de-
pending on the applied dataset. These changes were minor
and very method-specific. Examples of this include slight
variations in the queue size to reflect the size of the dataset
that the SSL method was trained on. Otherwise, this ta-
ble reflects the basic training hyperparameters for all SSL
methods in the paper.

Additionally, there were instances within the paper
where integration of the HEX loss required structural
changes to the optimization process of the associated SSL
method. For example, the losses for SimCLR and NNCLR
were directly replaced by their HEX version of the loss. In
Section 4, we detail the version of the loss that directly re-
places the SimCLR loss. The NNCLR version of HEX is
equivalent to the SimCLR version of HEX except the aug-
mented sample in the positive set is that of its nearest neigh-
bor, rather than derived from the same sample as the anchor
image. The All4One methodology uses the NNCLR loss as
part of their methodology. However, the HEX version of
All4One replaces its NNCLR loss with the NNCLR + HEX
version. In the case of dimensional contrastive approaches
like VicReg and Barlow Twins, we add the SimCLR ver-
sion of HEX to each of these losses with an α parameter
to weight the contribution of each loss. For VicReg specifi-
cally, we also had to consider the hyperparameters that went
into weighting each of its other loss functions. We empir-
ically found that scaling the HEX loss by a factor of 5 al-
lowed stable training alongside the other loss functions in
the VicReg formulation. Barlow Twins did not require any
additional tuning to adapt to additional HEX regularization.

All methods received the default augmentation policy
described within the solo-learn github. The only parame-
ter that was changed in a dataset specific manner was the
random resized crop parameter. If the images were smaller
than 224x224, they received a random crop size that is equal
to the size of the images within the dataset. However, if
the images were larger, then the parameter was defaulted to
224x224.

7.3.3 Transformer Experiments

We used the standard vision transformer and the Swin trans-
former for all experiments in our study. We kept all hy-
perparamters and optimizers the same as in the case of the
ResNet-50 experiments with the exception of transformer
specific changes such as a decoder embed dimension of 512,
depth of 8, patch size of 4, and 16 decoder heads.

https://github.com/vturrisi/solo-learn


7.3.4 Hyperparameter Variation

We show in Figure 7 the impact of varying batch size on the
performance of our method. We see that the performance
improvements of HEX are maintained even when this hy-
perparameter is varied.

Figure 7. This shows performance variation as batch size is var-
ied. The HEX approach is able to maintain performance improve-
ments.

We also show an analysis of varying the threshold hyper-
parameter when using manual strategies in Table 7. We see
that the performance on the CIFAR-100 dataset is sensitive
to the chosen thresholding parameters. This demonstrates
the superiority of the adaptive threshold setting method over
the manual threshold setting method as this does not require
potentially expensive tuning of hyperparameters. In Table
7, we also detail how these hyperparameters were manu-
ally set. This, alongside improved results, illustrates that
manual hyperparameter tuning is potentially a sub-optimal
strategy to the adaptive method when considering the results
across all experiments on the CIFAR-100 dataset. In the Ta-
ble, “cos” refers to an additional thresholding strategy that
lowers the threshold value in a continuous fashion from its
starting value to a minimal value along a cosine curve that
is a function of the epoch of training.

7.4. Additional Analysis

7.4.1 Threshold Analysis

The adaptive version of the HEX loss uses the cosine sim-
ilarity distribution to assign a threshold at different points
in training. We show an example of the exact value of this
threshold at different points in training in Figure 8. This
was computed as the average threshold value of all 10000
images in the CIFAR-100 test set. However, in practice
this threshold is computed on a batch-wise basis rather than
across the entire dataset as a whole. We see that the adaptive
threshold gradually decreases during training to reflect the
shifting cosine similarity distribution of the dataset. Later

Figure 8. This shows the value of the threshold parameter in the
adaptive setting across different epochs of training on the CIFAR-
100 test set.

in training, this decrease starts to level out as the hierarchi-
cal structure of the dataset emerges with persistent larger
cosine similarity values at samples within the same hierar-
chical grouping.

Additionally, in Figure 9 we show the average number
of samples in the Cifar-100 test set are above the threshold
parameter at different epochs of training. This value grad-
ually increases as the threshold parameter is lowered as a
result of growing confidence in the hierarchical structure of
the representation space at later points of training.

Figure 9. This shows the value of the threshold parameter in the
adaptive setting across different epochs of training on the Cifar-
100 test set.

7.4.2 Re-weighting Ablation

We also show an ablation study comparing our method
against a different approach [45] that also introduces a re-
weighting of negative terms. The difference is that our
method explicitly identifies samples at different points of



Method Projection
Method Specific

Parameters Temperature Optimizer Batch Size LR Decay

SimCLR 2048-128 N/A 0.1 LARS 256 0.4 1e-5
NNCLR 2048-4096-256 Queue = 98304 0.2 LARS 256 1.0 1e-5

All4One 2048-4096-256
Queue = 98304

Momentum = 0.99 0.2 LARS 256 1.0 1e-5

Barlow 2048 - 2048 Scale Loss = 0.1 N/A LARS 256 0.3 1e-4
BYOL 4096 - 256 - 4096 Momentum = 0.99 N/A LARS 256 1.0 1e-5

Moco v2 2048-256
Queue Size = 65536
Momentum = 0.99 0.2 SGD 256 0.3 1e-4

VicReg 2048 - 2048
Sim weight = 25
Var weight = 25
Cov weight = 1

N/A LARS 256 0.3 1e-4

SimSiam 2048-2048-512 N/A 0.2 SGD 256 0.5 1e-5

Table 6. This table shows the baseline training parameters for each SSL method. Variations from these parameters are discussed in the text.

Hyperparameter Tuning of Manual Strategy Accuracy
dist thres dist min step down step type Top-1 Top-5

0.95 0.65 - cos 66.63 88.96
0.85 0.45 - cos 60.57 86.37
0.95 0.65 0.1 step 66.20 89.04
0.85 0.45 0.1 step 65.63 88.18
0.95 0.65 0.05 step 66.23 88.70
0.85 0.45 0.05 step 65.08 88.29

Proposed Adaptive Strategies 67.56 90.02

Table 7. This demonstrates 6 different manual hyperparameter
tuning approaches. In CIFAR-100 datasets, we can see none of
them were superior to the adaptive strategy. “step” refers to the
stepwise manual strategy while “cos” represents the cosine thresh-
olding strategy.

Method Cifar-100 Linear Evaluation Accuracy
HCL 64.64

SimCLR 64.46
HEX 67.56

Table 8. We show a comparison with a different re-weighting strat-
egy that does not have a mechanism to target hierarchical group-
ings. HCL is trained in the manner described in its paper, [45]
while we train SimCLR and HEX in the manner described in this
paper.

training based on the intuition of identifying hierarchical
groupings while the other approach generally re-weights the
entire batch as a whole. We show performance improve-
ments in Table 8 within a fine-tuning setting on Cifar-100
with the training parameters described in this paper while
using a stepwise strategy for HEX. This shows that our per-
formance improvements are not just a result of reweighting,
but also due to the importance of identifying the right hier-
archically aligned samples.

7.4.3 Fine-grained pretraining Ablation

We show an ablation study to evaluate the efficacy of our
proposed HEX method on a less diverse representation
space. Fine-grained datasets are less diverse due to all their
classes sharing features in common with each other. In the
main paper, we showed the result of fine-tuning and trans-
fer learning within the context of a pre-trained Imagenet
model. Instead of pretraining on ImageNet datasets, which
has greater feature diversity, we pre-train a NNCLR model
with fine-grained datasets as depicted in Table 9. We then
compare against the same NNCLR setup with our additional
HEX regularization. As shown, applying HEX regulariza-
tion during SSL pretraining consistently results in better
classification performance across most datasets compared
to not applying HEX. This demonstrates that our HEX tech-
nique effectively disentangles the local-collapse phenom-
ena.

NNCLR NNCLR + HEX
Top-1 Top-5 Top-1 Top-5

Cars [14] 42.92 71.99 46.60 75.66
Flowers [41] 32.94 59.22 28.63 55.88
NABirds [48] 21.83 45.19 22.26 45.67
Caltech-101 [19] 72.60 93.79 73.73 94.35
Dogs [30] 42.06 73.75 47.40 77.95
Pets [43] 47.78 81.90 53.23 85.88
Aircraft [39] 30.03 57.82 29.07 56.68
Caltech-Birds [50] 19.49 43.22 20.76 47.36

Table 9. By comparing with and without HEX methods on pre-
trained models with fine-grained datasets, we show that HEX can
still enhance classification performance in a less diverse represen-
tation space.



iNat21
Type Top-1 Top-5

SimCLR None 20.67 38.64
SimCLR + HEX Ada 22.01 40.92
SimCLR + HEX Sup 23.35 42.94

Table 10. This shows the performance of HEX using one of the
superclasses within iNat21.

Imagenet
Type Top-1 Top-5

All4One None 52.83 78.29
All4One + HEX Ada 54.30 79.09

Table 11. This shows the performance of HEX on All4One on the
Imagenet dataset with 50 epochs of pre-training within the linear
evaluation setting.

7.4.4 Hierarchical Emergence

To get an intuitive sense of the emergence of hierarchies
during training, we take each model me described in Sec-
tion 3 and pass in the test set to get an associated repre-
sentation matrix R with each row corresponding to a test
image representation ri. We associate each ri with its la-
bel yi and superclass label ysi. Together, this information is
used to produce Figures 10 and 11. In Figure 10 we show a
UMAP [40] visualization of the representation space at the
beginning and end of training under different conditions and
subsets of the test data space. In the top row of this figure,
we see all points in the test set labeled by their superclass. It
is visually evident that all superclass clusters become more
separable by the end of training. This is shown more clearly
in the middle row of Figure 10 where we randomly choose
samples from 5 random superclasses and show the organi-
zation of their clusters at the beginning and end of training.
We also analyze the organization of classes within a single
superclass in the bottom row of Figure 10. These plots show
that classes within a superclass also become more separable
with respect to each other. All of these plots together in-
dicate that representations naturally cluster in terms of su-
perclasses as well as regular ground truth classes over the
course of SSL training. This is further evidenced in Fig-
ure 11 where we observe that the KNN accuracy of the
representations with respect to both superclass and ground
truth labels both increase over the course of training for
the dimension-based Barlow Twins [54] and sample-based
NNCLR strategies.

We also show an additional study of using hierarchies
in the iNaturalist21 dataset. This dataset is composed in a
hierarchical fashion that corresponds to the taxonomies that
come with animal and plant species. We show in Table 10
that appropriately using the hierarchy information for HEX

in a supervised fashion of the associated superclasses leads
to performance improvements in the same way as the Cifar-
100 datasets in the main paper.

7.4.5 Additional ImageNet Experiments

We also added an additional experiment with 50 epochs of
pre-training with the All4One methodology. This is shown
in Table 11. We see that HEX is able to achieve perfor-
mance improvements on the Imagenet dataset for this algo-
rithm as well.

Figure 10. This plot shows the umap embeddings of the samples
of Cifar-100 labeled by their superclass label. We show the or-
ganization of the representation space under different data access
settings.

7.4.6 Embedding Space Analysis

We analyze a variety of trends with respect to cosine simi-
larity distributions in Figures 12 and 13. In Figure 12, we
show the average cosine similarity value for each anchor
image with all other images in the test set of Cifar-100 at
different epochs of training with the NNCLR method within
both the projection space and representation space of the
model. On average, for both spaces the average cosine sim-
ilarity of superclass samples is higher than that of regular
samples. Additionally, we see that the average cosine sim-
ilarity of the representation space is higher than that of the
projection space possibly due to retaining a greater number
of redundant features between samples. From this analy-
sis, it is unclear whether to compute the cosine similarity
with respect to the representation space or projection space
when estimating the presence of hierarchical groupings. To



Figure 11. This shows the KNN accuracy using the cosine simi-
larity distance metric for the NNCLR [17] and Barlow Twins [54]
SSL methods across 450 epochs of training for both ground truth
Cifar-100 labels as well as labels denoting the superclass of each
sample.

Figure 12. This shows the variation in average pairwise cosine
similarity between superclass negatives and regular negatives for
each instance in the Cifar-100 test set throughout different epochs
of training. This plot is from the NNCLR method.

analyze these trends further, we take the ratio of superclass
cosine similarity to regular class cosine similarity for both
spaces across all epochs of training. We observe in Fig-
ure 13 that this ratio increases over training for the projec-
tion space, but not the representation space. This indicates
that the cosine similarity metric of the embedding space
becomes more hierarchically aligned as training progresses
due to a greater relative difference in the cosine similarity
between the two subsets. It is interesting to note that this
does not hold for the cosine similarity of the representation
space which shows that the space in which this metric is
computed matters in terms of serving as a useful indicator

Figure 13. This shows the relative cosine similarity between super-
class and regular negatives over the course of training on Cifar-100
with the NNCLR method.

of hierarchical separability.

Figure 14. This shows the embedding space of the vehicle su-
perclass before and after the application of HEX to the SimCLR
algorithm.

We also show in Figure 14, the embedding space of the
Cifar-100 test set for samples from the vehicle superclass
for both SimCLR and SimCLR + HEX. This visualization
was created using the UMAP algorithm on the representa-
tion space of each model. We see that the application of
HEX causes additional spread for these locally clustered
samples within the same superclass. This results in greater
separability between classes that are prone to collapsing
with respect to each other compared to the embedding space
produced by SimCLR alone.

We also visually show the samples with the highest co-
sine similarity in randomly generated batches of 128 as each
anchor image in Figure 15. This plot was produced us-
ing a model trained with the SimCLR methodology for 400
epochs of training. Every image is labeled with the super-
class that it belongs to. Note that in most cases, the retrieved
samples are members of the same superclass as each anchor
image.



Figure 15. This shows the images with the highest cosine simi-
larity in each batch with the given anchor image. The label above
each image identifies the superclass that it belongs to. These im-
ages were drawn from the Cifar-100 test set.



Dataset Abbreviation & Link Description # of classes
CIFAR-100 [35] cifar100 100 classes of 32x32 color images, including animals,

vehicles, and various objects commonly found in the
world.

100

CIFAR-10 [35] cifar10 10 classes of 32x32 color images featuring everyday
objects and scenes such as airplanes, cars, and animals.

10

Tiny ImageNet [52] tinyimagenet200 200 classes of 64x64 images, a smaller version of the
ImageNet dataset, used for object recognition and clas-
sification tasks.

200

STL-10 [12] stl10 10 classes of 96x96 images, designed for developing
unsupervised feature learning, deep learning, and self-
taught learning algorithms.

10

iNaturalist 2021 [49] inat21 Large-scale dataset with over 10,000 species, collected
from photographs of plants and animals in their natural
environments for fine-grained classification.

10,000

ImageNet [15] imagenet Large dataset with over 1,000 classes, used for image
classification and object detection, containing millions
of images across a wide variety of categories.

1,000

ImageNet-100 imagenet100 Subset of ImageNet with 100 classes, providing a more
manageable dataset for specific research and develop-
ment purposes.

100

FGVC Aircraft [39] aircraft Aircraft categorization dataset with 100 classes, featur-
ing various aircraft models including different variants
and manufacturers.

100

Oxford 102 Flowers [41] flowers 102 category flower dataset, containing images of
flowers commonly found in the United Kingdom, used
for fine-grained visual classification.

102

Stanford Cars [14] cars Car categorization dataset with 196 classes, covering a
wide range of car models from various manufacturers,
including different years and trims.

196

Stanford Dogs [30] dogs Dog breed classification dataset with 120 classes, con-
taining images of different dog breeds, used for fine-
grained classification tasks.

120

Oxford Pets [43] pets Cat and dog breeds dataset with 37 classes, each breed
has roughly 200 images, used for pet recognition and
classification.

37

NABirds [48] NABirds North American birds dataset with 1011 species, fea-
turing images of birds in various poses and environ-
ments, used for fine-grained bird species identification.

1011

Caltech 101 [19] caltech-101 101 object categories dataset and background, contain-
ing images of various objects including animals, build-
ings, and tools, used for object recognition and classi-
fication.

102

Food 101 [5] food 101 food categories with 101,000 images, featuring
various dishes and cuisines from around the world,
used for food recognition tasks.

101

CUB-200-2011 [50] Caltech-Birds 200 bird species dataset with annotated bounding
boxes and part locations, used for fine-grained bird
species classification and localization.

200

Table 12. Overview of various image datasets

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://tiny-imagenet.herokuapp.com/
http://ai.stanford.edu/~acoates/stl10/
https://www.kaggle.com/c/inaturalist-2021
http://www.image-net.org/
http://www.image-net.org/
https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/
http://ai.stanford.edu/~jkrause/cars/car_dataset.html
http://vision.stanford.edu/aditya86/ImageNetDogs/
http://www.robots.ox.ac.uk/~vgg/data/pets/
https://dl.allaboutbirds.org/nabirds
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
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