
1. Appendix
1.1. Overview

The appendix is organized into the following sections:
• Section 1.2: Implementation Details
• Section 1.3: Datasets
• Section 1.4: Evaluation Metrics
• Section 1.5: Data Augmentation
• Section 1.6: Camera Model
• Section 1.7: Impact of Backbones
• Section 1.8: Impact of Deformable Cross-Attention

Layers
• Section 1.9: Effect of losses on NeurIK model
• Section 1.10: Multi-frame out vs Single frame out
• Section 1.11: Impact of Number of Frames in Neura-

lIK
• Section 1.12: Qualitative Results

1.2. Implementation Details

MQ-HMR. Our MQ-HMR model is implemented in Py-
Torch. To achieve this, we utilized multi-resolution feature
maps at 4×, 8×, and 16× scales, ensuring the model captures
both local detail and global structure. The total loss func-
tion in MQ-HMR is defined as Ltotal = LSMPL +L3D +L2D.
This combines 3D loss (L3D), 2D loss (L2D), and SMPL pa-
rameter loss (LSMPL) to optimize the shape (β) and pose (θ)
parameters in the SMPL space. The loss weights for this
stage are carefully tuned to balance each objective, where
the pose component is weighted at λθ = 1 × 10−3 and
the shape component at λβ = 5 × 10−4. For the 3D loss,
λ3D = 5 × 10−2, and for the 2D loss, λ2D = 1 × 10−2.
The architecture incorporates 96 Pose Token Queries (Q)
and 4 deformable cross-attention layers as default, which
enables the model to attend to relevant spatial information
across different scales. The model was trained for 100K it-
erations using the Adam optimizer with a batch size of 48
and a learning rate of 1× 10−5.
NeurIK. Our NeurIK module is implemented in PyTorch
and processes virtual markers Xexp

VM ∈ R142×3 extracted
from the 3D mesh produced by MQ-HMR. The architec-
ture includes a Spatial Convolution Encoder that utilizes
1D convolutional layers for spatial feature extraction and
a Temporal Transformer Encoder that employs multi-head
self-attention to model temporal dependencies across mul-
tiple frames. The total loss function is defined as LneurIK =
λjLj + λmLm + λsLs + λqLq, with the weights set as
λj = 1.0, λm = 2.0, λs = 0.1, and λq = 0.06. The model
was trained for 25 epochs using the Adam optimizer with
an initial learning rate of 0.001, decaying to 5 × 10−6, and
a batch size of 128. Data augmentation techniques such as
scaling, rotation, translation, and noise injection were ap-
plied to increase the model’s robustness to occlusions and
real-world variations.

To generate the input for our network, the SMPL mesh
for each video frame was recovered using a test-time opti-
mized HMR 2.0 model. The vertex indices of virtual mark-
ers on the SMPL mesh were used to calculate marker lo-
cations, which served as critical inputs for the subsequent
spatio-temporal modeling. During training, we employed
data augmentation methods such as scaling, rotation, trans-
lation, and noise to mimic occlusions, following the ap-
proach used in [1]. Our model was trained using the follow-
ing hyperparameters and loss functions. We used an Adam
optimizer with a weight decay of 0.001 and a batch size of
128. The learning rate decayed exponentially from an initial
rate of 0.001 to a final rate of 5× 10−6 over 25 epochs. For
the spatio-temporal model, we set the hyperparameters ex-
perimentally, adjusting key parameters as needed through-
out the training process.

1.3. Datasets

We utilized videos from BMLmovi [4], OpenCap [7]
and BEDLAM [2]datasets. We trained our NeurIK model
on BMLmovi data and tested on OpenCap and BEDLAM
datasets.

BML-MoVi: BMLMovi consists of 90 subjects per-
forming 21 different actions, captured using two cameras
and a marker-based motion capture system. As BMLMovi
lacks kinematic annotations, we processed the available
marker data through the OpenSim Scale and OpenSim IK
tools to accurately determine joint angles and body segment
dimensions for ground truth measurements. [4].

OpenCap: OpenCap includes data from ten subjects
performing various actions such as walking, squatting,
standing up from a chair, drop jumps, and their asymmetric
variations. The recordings were made using five RGB cam-
eras alongside a marker-based motion capture system. Ad-
ditionally, OpenCap offers processed marker data and kine-
matic annotations for a comprehensive full-body OpenSim
skeletal model.

BEDLAM: BEDLAM dataset comprises synthetic
video data featuring a total of 271 subjects, including 109
men and 162 women. It includes monocular RGB videos
paired with ground-truth 3D bodies in SMPL-X format,
covering a diverse range of body shapes, skin tones, and
motions. The dataset features realistic animations with de-
tailed hair and clothing simulated using physics, enhancing
the realism of the data. To obtain kinematic annotations, we
leverage the vertices of SMPL-X mesh to generate virtual
markers and processed the available marker data through
the OpenSim Scale and OpenSim IK tools to determine joint
angles and body segment dimensions as the ground-truth
data. [2].



1.4. Evaluation Metrics

For NeurIK, we employ metrics that focus on biome-
chanical accuracy. These include Mean Per Bony Land-
marks Position Error (MPBLPE), which measures the accu-
racy of predicted bony landmarks against ground truth posi-
tions, and Mean Absolute Error for body scale (MAEbody),
which evaluates the correctness of predicted body segment
dimensions by comparing their longest axes in millimeters.
Additionally, we report Mean Absolute Error for joint an-
gles (MAEangle), which assesses the precision of joint angle
predictions in degrees, critical for biomechanical simula-
tions such as joint force and muscle force analysis.

MPBLPE: Mean Per Bony Landmarks Position Error,
measures the accuracy of predicted bony landmark posi-
tions by comparing them to ground truth data. This met-
ric is inspired by the mean per joint position error (MPJPE)
which is often used in 3D pose estimation. MPBLPE in-
volves aligning both the predicted and actual positions at
a common root point and then calculating the average Eu-
clidean distance between corresponding landmarks, i.e.,

MPBLPE(pred, target) =
1

N

N∑
i=1

√√√√ 3∑
j=1

(predij − targetij)2

where i indexes the joints, and j indexes the spatial dimen-
sions (X, Y, Z). For each joint i, predij and targetij represent
the predicted and target positions in dimension j, respec-
tively. The entire expression is divided by N , the number of
bony landmarks, to calculate the average Euclidean distance
per landmark, which normalizes the loss to account for dif-
ferences in the number of joints among different datasets or
models.

MAE body: The axis corresponding to the longest dimen-
sion of each body segment is selected, and its scale is con-
verted into millimeters to calculate the Mean Absolute Er-
ror (MAE body). Specifically, the x-axis is used for the skull,
toes, and calcaneus; the y-axis is chosen for the spine, lower
limbs, and upper limbs; the z-axis is applied for the jaw,
scapula, and clavicle; and for the pelvis, all three axes are
considered [1].

MAE angle: MAE angle represents the mean absolute error
of the joint angle, measured in degrees [1, 7].

In this study, MAE angle is prioritized over MPBLPE be-
cause joint angles, rather than marker positions, will be uti-
lized in subsequent applications of musculoskeletal models,
such as simulating joint reaction forces and analyzing mus-
cle forces. Consequently, ensuring the accuracy of joint
angles is crucial for producing precise force simulations,
making it more significant than the accuracy of marker po-
sitions.

1.5. Data Augmentation

To enhance MQ-HMR’s robustness and generalization,
we applied extensive data augmentation during training.
This included random scaling, rotation, horizontal flips, and
color jittering on both images and poses. These augmen-
tations help the model better handle real-world challenges
like occlusions and incomplete body information. As a re-
sult, the data augmentation process significantly contributes
to MQ-HMR’s improved performance in human mesh re-
construction by making the model more adaptable and re-
silient to diverse and unpredictable inputs.

1.6. Camera Model

In our approach, MQ-HMR utilizes a weak perspective
camera model with a fixed focal length 5000 and an intrin-
sic matrix K ∈ R3×3. To simplify the computation, the
rotation matrix R is set to the identity matrix I3, allowing
us to focus solely on the translation vector T ∈ R3. The 3D
joints J3D are then projected onto 2D coordinates J2D using
the equation J2D = Π(K(J3D + T )), where Π denotes the
perspective projection based on camera intrinsics K. This
simplification reduces the number of parameters involved,
improving the computational efficiency of our human mesh
recovery process.

1.7. Impact of Backbones

The comparison of backbones in MQ-HMR highlights
that the ViT-H backbone consistently delivers superior per-
formance in terms of MPJPE on both the 3DPW and EMDB
datasets (Table 1). Specifically, ViT-H achieves the lowest
MPJPE, with 69.0 mm on 3DPW and 92.5 mm on EMDB,
indicating its strength in accurate pose estimation. While
HRNet-w48 shows a slight advantage in MVE on 3DPW,
with 79.5 mm compared to ViT-H’s 79.8 mm, this minor
improvement in mesh vertex error does not offset its higher
MPJPE. On the more complex EMDB dataset, ViT-H main-
tains a clear edge in both MPJPE and MVE, further solidi-
fying its effectiveness in capturing detailed pose structures.
Thus, ViT-H is the more robust backbone for 3D human
pose estimation, especially when precision across both met-
rics is essential.

Table 1. Impact of Backbones on MQ-HMR

3DPW EMDB
MPJPE

(↓)
MVE

(↓)
MPJPE

(↓)
MVE

(↓)

ViT-H 96 69.0 79.8 92.5 98.9
HRNet-w48 70.3 79.5 93.5 100.5

1.8. Impact of Deformable Cross-Attention Layers

The impact of deformable cross-attention layers in MQ-
HMR reveals that the optimal number of layers for accu-



rate 3D pose estimation is 4 (Table 2). With 4 layers, the
model achieves the lowest MPJPE on both the 3DPW (69.0
mm) and EMDB (92.5 mm) datasets, capturing pose infor-
mation effectively across different complexities. Increasing
the number of layers to 6 offers a slight improvement in
mesh vertex error (MVE), particularly reducing it to 78.9
mm on 3DPW, but at the cost of a higher MPJPE. However,
further increasing the number of layers to 8 results in dimin-
ished performance, as seen with the 72.4 mm MPJPE for
3DPW, suggesting that too many layers may introduce re-
dundancy and inefficiencies. Additionally, the higher num-
ber of cross-attention layers increases the computational
burden without significant accuracy gains. Therefore, 4 de-
formable cross attention layers provide the best balance be-
tween computational efficiency and performance, avoiding
the computationally heavy overhead of higher-layer config-
urations.

Table 2. Impact of # of Deformable Cross Attention Layers in
MQ-HMR.

3DPW EMDB
# of Deformable
Cross Attention

Layers MPJPE MVE MPJPE MVE

2 75.2 87.1 98.1 105.6
4 69.0 79.8 92.5 98.9
6 70.4 78.9 93.1 103.1
8 72.4 84.1 93.5 102.5

1.9. Effect of Losses on NeurIK Model

We assess the effect of various loss terms as presented
in Table 3, by progressively introducing each loss during
the model training process. Initially, the model is trained
using only Lm (marker loss), followed by the sequential
addition of Lj (joint loss), Lq (angle loss), and finally Ls
(body scale loss). The results show that training with only
Lm achieves the lowest MPBLPE (21.57), indicating good
alignment of bony landmarks. However, this configuration
yields relatively high errors in body scale (MAEbody = 8.46)
and joint angles (MAEangle = 7.58), highlighting its limi-
tations in capturing accurate body dimensions and angles.
Introducing Lj into the training improves both the body and
angle predictions, reducing MAEbody to 7.18 and MAEangle
to 6.43, although MPBLPE slightly increases to 22.26. Fur-
ther, the inclusion of Lq significantly improves joint angle
accuracy, achieving the lowest MAEangle (2.34), though this
comes at the cost of a slight increase in body scale error
(MAEbody = 6.21). Finally, adding Ls results in the best
body scale accuracy, with MAEbody reduced to 3.97, though
the joint angle error slightly increases to MAEangle = 2.84.
These findings demonstrate that while each loss term opti-
mizes different aspects of the model’s performance, utiliz-
ing all four losses together achieves a balanced improve-

ment across both body scales and joint angles.

Table 3. Effect of losses on NeurIK model

Lm Lj Lq Ls

Lm ✓ ✓ ✓ ✓
Lj ✓ ✓ ✓
Lq ✓ ✓
Ls ✓

MPBLPE 21.57 22.26 24.08 25.76
MAEbody 8.46 7.18 6.21 3.97
MAEangle 7.58 6.43 2.34 2.84

1.10. Multi-frame out vs Single frame out

Table 4 compares the performance of NeurIK using two
different temporal models: multiple frame out and single
last frame out, across three datasets: BML-MoVi, BED-
LAM, and OpenCap. In the multi-frame temporal model,
instead of predicting just the last frame in a sequence, the
model predicts all 64 frames. The results show that the
single last frame out model consistently outperforms the
multiple frame out model across all metrics and datasets.
For instance, in BML-MoVi, the single frame out model
achieves lower MAEbody (3.97 vs. 4.01) and MAEangle (2.84
vs. 2.95). Similar improvements are seen in BEDLAM and
OpenCap, suggesting that the single frame out model offers
better accuracy, making it the preferred choice for NeurIK.
The single frame out model likely outperforms the multi-
ple frame out model for several reasons. First, by focusing
solely on predicting the final frame, the model can concen-
trate its capacity on optimizing that specific output, result-
ing in more precise predictions. In contrast, the multiple
frame out model must predict the entire sequence, which
can introduce cumulative error across frames. Additionally,
predicting all frames may create temporal inconsistencies,
as the model tries to maintain coherence throughout the
sequence. The single frame out model avoids these chal-
lenges, offering a simplified learning objective that reduces
complexity and leads to better performance, especially in
terms of MAE. This makes it a more efficient choice for
tasks like NeurIK, where accuracy in the final frame is crit-
ical.

1.11. Impact of Number of Frames in NeuralIK

Table 5 illustrates the impact of varying the number of
frames used in the temporal model on the performance of
NeurIK across three datasets: BML-MoVi, BEDLAM, and
OpenCap. The results show that the number of frames
significantly affects the accuracy of the model, with opti-
mal performance generally observed at 64 frames across
all datasets. For the BML-MoVi dataset, increasing the



Table 4. Impact of different temporal model on NeurIK

BML-MoVi BEDLAM OpenCap
Temporal model MAEbody MPBLPE MAEangle MAEbody MPBLPE MAEangle MAEbody MPBLPE MAEangle

Multiple frame out 4.01 25.84 2.95 4.41 26.61 3.32 5.12 26.72 3.44
Single frame out 3.97 25.76 2.84 4.28 26.54 3.14 4.87 26.34 3.19

Table 5. Impact of number of frames in temporal model on NeurIK

BML-MoVi BEDLAM OpenCap
# of Frames MAEbody MPBLPE MAEangle MAEbody MPBLPE MAEangle MAEbody MPBLPE MAEangle

16 5.08 26.83 4.12 5.76 27.62 4.35 5.98 27.82 4.56
32 4.52 26.28 3.62 5.23 27.19 3.82 5.53 27.15 3.97
64 3.97 25.76 2.84 4.28 26.54 3.14 4.87 26.34 3.19
128 4.67 26.41 3.43 5.15 27.12 3.94 5.52 27.04 4.13

number of frames from 16 to 64 leads to a consistent re-
duction in both MAEbody and MAEangle, with the lowest
errors achieved at 64 frames (3.97 for MAEbody and 2.84
for MAEangle). Similarly, the MPBLPE decreases as the
number of frames increases, reaching 25.76 at 64 frames.
However, performance begins to degrade at 128 frames,
where both MAEbody and MAEangle increase. A similar
trend is observed in the BEDLAM and OpenCap datasets.
For BEDLAM, the MAEbody reduces from 5.76 at 16 frames
to 4.28 at 64 frames, with a corresponding improvement in
MAEangle (from 4.35 to 3.14). In the OpenCap dataset, the
optimal performance is also achieved at 64 frames, with
MAEbody reaching 4.87 and MAEangle improving to 3.19.
This ablation study shows that 64 frames strike the right bal-
ance between capturing enough temporal information and
maintaining computational efficiency. While performance
improves when increasing frames from 16 to 64, using 128
frames offers no further gains and even slightly degrades
performance. The likely reason is that 64 frames provide
sufficient motion dynamics and biomechanical patterns for
accurate pose estimation, while fewer frames lack context,
and more frames introduce redundant information. Thus,
64 frames offer the optimal amount of temporal data with-
out adding unnecessary complexity or noise.

1.12. Qualitative Results

We present qualitative results of MQ-HMR in Figures 1
and 2, showcasing the model’s capability in handling ex-
treme poses and partial occlusions. These results demon-
strate the effectiveness of MQ-HMR, where the 3D recon-
structions align well with the input images and maintain
accuracy when viewed from different perspectives. A key
factor behind this success is MQ-HMR’s multi-query de-
formable attention mechanism, which efficiently manages
uncertainty during the 2D-to-3D mapping process. MQ-
HMR is able to overcome challenges that typically affect
other state-of-the-art models. This approach ensures that
MQ-HMR produces accurate and consistent 3D reconstruc-

tions, even in complex or ambiguous scenarios where tra-
ditional methods often struggle. Also, We show the quali-
tative results of BioPose in Figure 3, highlighting how our
model is able to predict different poses, very close to the
ground truth. The figures show multiple actions like squat-
ting and drop jumping.
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Figure 1. Comparison of state-of-the-art methods, HMR2.0 [5] and TokenHMR [3], which use vision transformers for 3D human mesh
recovery from a single image. Red circles highlight errors in these methods when dealing with complex or ambiguous poses. In contrast, our
MQ-HMR method addresses these challenges by incorporating a multi-query deformable transformer, leveraging multi-scale feature maps
and a deformable attention mechanism to deliver more accurate and anatomically consistent pose estimations, even in difficult scenarios.



Figure 2. Qualitative results of our approach on challenging poses from the LSP [6] dataset.



Figure 3. Qualitative results of our proposed method BioPose and comparison with ground truth. These pictures include multiple actions
such as squatting and drop jumps.

Figure 4. Failure Cases of MQ-HMR in 3D Human Reconstruction: MQ-HMR frequently struggles with handling unusual body movements
and the complex layering of body parts in three-dimensional space. These difficulties often lead to inaccurate 3D pose estimations and
invalid results. The main reason for these limitations is the model’s dependence on the SMPL parametric model, which fails to adequately
represent the complexity of extreme or rare human pose.
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