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A. Calib3D Benchmark

In this section, we elaborate on additional details about
the proposed Calib3D benchmark, including basic configu-
rations regarding the datasets (Sec. A.1), models (Sec. A.2),
evaluation protocols (Sec. A.3), and license (Sec. A.4).

A.1. 3D Datasets

The Calib3D benchmark encompasses a total of 10
popular datasets in the area of 3D scene understanding,
with a diverse spectrum of dataset configurations regard-
ing data collections, label mappings, and annotation proto-
cols. Tab. A provides an overview of the datasets used in
our benchmark. The key features of each dataset are sum-
marized as follows.

• nuScenes [13] is one of the most popular driving
datasets in autonomous vehicle research, featuring
multimodal data from Boston and Singapore. It con-
tains 1000 scenes with 1.1 billion annotated LiDAR
points acquired by a Velodyne HDL32E LiDAR sen-
sor. In this work, we use the lidarseg subset of the
Panoptic-nuScenes dataset, which provides point-wise
class and instance labels across 16 merged semantic
categories. For more information: https://www.
nuscenes.org/nuscenes.

• SemanticKITTI [3] offers 22 densely labeled LiDAR
sequences of urban street scenes, making it one of the
most prevailing benchmarks for LiDAR-based seman-
tic scene understanding. The point clouds are acquired
by a Velodyne HDL-64E LiDAR sensor and are anno-
tated with a total of 19 semantic categories. For more
information: http://semantic-kitti.org.

• Waymo Open Dataset (WOD) [36] is a large-scale
dataset for autonomous driving. The 3D semantic
segmentation subset of WOD comprises 1150 scenes,
which are further split into 798 training, 202 valida-
tion, and 150 testing scenes, corresponding to 23691
training scans, 5976 validation scans, and 2982 testing
scans, respectively. The LiDAR scans are annotated
across 22 semantic categories. For more information:
https://waymo.com/open.

• SemanticPOSS [31] is constructed with a special fo-
cus on dynamic scenes. It includes 2988 scans from
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Table A. Summary of 3D datasets encompassed in the Calib3D benchmark. A total of ten 3D datasets have been used in our bench-
mark, including 1nuScenes [13], 2SemanticKITTI [3], 3Waymo Open [36], 4SemanticPOSS [31], 5SemanticSTF [43], 6ScribbleKITTI [39],
7Synth4D [35], 8S3DIS [2], and 9nuScenes-C and 10SemanticKITTI-C from the Robo3D benchmark [18]. Each dataset sheds light on a
specific data acquisition and annotation protocol, such as different LiDAR sensor setups, adverse weather conditions, weak annotations,
synthetic data, indoor scenes, and out-of-domain corruptions. The images shown here are adopted from the original dataset papers.

nuScenes SemanticKITTI Waymo Open SemanticPOSS SemanticSTF

ScribbleKITTI Synth4D S3DIS nuScenes-C SemanticKITTI-C

a 40-beam Hesai Pandora LiDAR sensor, offering in-
sights into scene dynamics at Peking University’s cam-
pus. For more information: https://www.poss.
pku.edu.cn/semanticposs.

• SemanticSTF [43] is built on the STF dataset [4].
It features 2076 scans under various weather condi-
tions in the real world, serving as a testbed for as-
sessing model robustness. The point clouds are ac-
quired by a Velodyne HDL64 S3D LiDAR sensor un-
der snowy, foggy, and rainy scenarios. For more infor-
mation: https://github.com/xiaoaoran/
SemanticSTF.

• ScribbleKITTI [39] is an extension of the Se-
manticKITTI [3] dataset. It introduces weakly-
supervised annotations through line scribbles, offering
a cost-effective labeling approach for 19130 LiDAR
scans, which are under the same data splits and se-
mantic annotations of citebehley2019semanticKITTI.
For more information: https://github.com/
ouenal/scribblekitti.

• Synth4D [35] was collected utilizing CARLA sim-
ulations [12]. The Synth4D-nuScenes subset con-
tains about 20000 labeled point clouds for testing
model performance in virtual urban and rural scenes,
where the label mappings are aligned with that of
the nuScenes [13] dataset. For more information:

https://github.com/saltoricristiano/
gipso-sfouda.

• S3DIS [2] is a comprehensive collection of point
clouds for indoor spaces. It encompasses detailed
scans from six large-scale indoor areas that include
over 215 million points and covers more than 6,000
square meters. Each point in the dataset is anno-
tated with one of several semantic labels correspond-
ing to different object categories like walls, floors,
chairs, tables, etc. For more information: http://
buildingparser.stanford.edu/dataset.
html.

• nuScenes-C [18] is part of the 3D robustness bench-
marks in Robo3D [18] and is built based on the
nuScenes [13] dataset. It focuses on the 3D model’s
out-of-distribution robustness against eight types of
common corruptions, offering a platform for testing
under diverse adverse conditions. For more infor-
mation: https://github.com/ldkong1205/
Robo3D.

• SemanticKITTI-C [18] shares the same common cor-
ruption types with nuScenes-C and is built based on
the SemanticKITTI [3] dataset. For more informa-
tion: https://github.com/ldkong1205/
Robo3D.
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A.2. 3D Models

The Calib3D benchmark encompasses a total of 28 state-
of-the-art models in the area of 3D scene understanding,
with a diverse spectrum of LiDAR representations, network
architectures, and pre-/post-processing. Tab. B provides a
summary of the models used, including their LiDAR modal-
ities and key features.

A.3. Benchmark Protocols

In this work, to ensure fairness in comparisons, we adopt
the following protocols in model evaluations:

• All 3D scene understanding models are trained on the
official training set of each 3D dataset, and evaluated
on data from the official validation set. There is no
overlap between training and evaluation data.

• To reflect the original behavior of each 3D scene un-
derstanding model, we directly use public checkpoints
whenever applicable, or re-train the model using its
default configuration. The acknowledgments of pub-
lic checkpoints and implementations are included in
Sec. F.

• We notice that some models (and their public check-
points) are enhanced using extra “tricks” on the valida-
tion/testing sets, such as test time augmentation, model
ensembling, etc. To ensure fairness, we re-train such
models to reflect their “clean” performance.

A.4. License

The Calib3D benchmark is released under the CC BY-
NC-SA 4.0 license1. For licenses regarding the code-
base used in the Calib3D benchmark, kindly refer to Ap-
pendix F.1. For licenses regarding the 3D datasets used in
the Calib3D benchmark, kindly refer to Appendix F.2. For
licenses regarding the model implementations used in the
Calib3D benchmark, kindly refer to Appendix F.3.

B. Additional Implementation Detail
In this section, we provide additional implementation de-

tails to help reproduce the key results shown in this work.

B.1. 3D Model Training

Our Calib3D benchmark is constructed based on the
popular MMDetection3D [9] and OpenPCSeg [27] code-
base, as well as several standalone implementations that
have not been integrated into MMDetection3D [9] and/or
OpenPCSeg [27]. Most 3D models adopt a unified train-
ing configuration, including the number of training epochs,
optimizer, and learning rate scheduler. We apply common

1https://creativecommons.org/licenses/by-nc-sa/
4.0/legalcode.en.

3D data augmentations in Cartesian space, including ran-
dom flipping, rotation, scaling, and jittering. The 3D mod-
els are trained using eight GPUs with a batch size of 2. The
number of epochs are set as 80 for nuScenes and 50 for Se-
manticKITTI, Waymo Open, SemanticPOSS, SemanticSTF,
ScribbleKITTI, and Synth4D. For S3DIS, we follow the de-
fault setups as MMDetection3D [9]. For additional details,
please refer to the corresponding codebase.

B.2. 3D Model Evaluation

We evaluate the 3D models by following the conven-
tional evaluation setups. As mentioned in Sec. A.3, we do
not use any extra “tricks” on the validation/testing sets, such
as test time augmentation, model ensembling, etc.

B.3. PyTorch-Style ECE Calculation

To facilitate reproduction, we provide a PyTorch-style
code snippet for calculating the expected calibration error
(ECE) on point clouds in Listing 1.

1 import torch
2 import torch.nn.functional as F
3

4 def calculate_ece(logits, labels, ignore_index, n_bins
=10):

5 valid_index = labels != ignore_index
6 logits, labels = logits[valid_index], labels[

valid_index]
7

8 bin_bound = torch.linspace(0, 1, n_bins + 1)
9 lowers, uppers = bin_bound[:-1], bin_bound[1:]

10

11 softmaxes = F.softmax(logits, dim=1)
12 confs, preds = torch.max(softmaxes, 1)
13 accs = preds.eq(labels)
14

15 ece = torch.zeros(1)
16 for l, u in zip(lowers, uppers):
17 in_bin = confs.gt(l.item()) * confs.le(u.item())
18 prop_in_bin = in_bin.float().mean()
19 if prop_in_bin.item() > 0:
20 acc_in_bin = accs[in_bin].float().mean()
21 avg_conf_in_bin = confs[in_bin].mean()
22 ece += torch.abs(avg_conf_in_bin -

acc_in_bin) * prop_in_bin
23

24 return ece.item()

Listing 1. PyTorch-style code snippet for calculating ECE scores
on point clouds.

B.4. PyTorch-Style Implementation of DeptS

To facilitate reproduction, we provide a PyTorch-style
code snippet of the proposed depth-aware scaling (DeptS)
method in Listing 2.

1 import numpy as np
2 import torch
3 import torch.nn as nn
4

5 class Depth_Aware_Scaling(nn.Module):
6

7 def __init__(self, threshold):
8 super(Depth_Aware_Scaling, self).__init__()
9 self.T1 = nn.Parameter(torch.ones(1))

10 self.T2 = nn.Parameter(torch.ones(1) * 0.9)
11 self.k = nn.Parameter(torch.ones(1) * 0.1)
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Table B. Summary of 3D models encompassed in the Calib3D benchmark. We categorize models into five distinct groups, based on their
LiDAR representations, i.e., 1range view, 2bird’s eye view, 3sparse voxel, 4multi-view fusion, and 5raw point. Each model sheds light on a
specific network structure and model configuration.

Model Modality Key Feature Ref

RangeNet++ • Range View The first range view LiDAR segmentation model with a FCN structure [30]
SalsaNext • Range View Uncertainty-aware range view segmentation with dilation modules [11]
FIDNet • Range View Fully interpolation encoding for better range view post processing [51]
CENet • Range View Concise and efficient range view learning with unified model structure [7]
RangeViT • Range View Replace ResNet backbone with ViT for enhancing range view learning [1]
RangeFormer • Range View Combine RangeAug, RangePost, and RangeFormer for better results [17]
FRNet • Range View Frustum-range fusion & interpolation for scalable LiDAR segmentation [47]

PolarNet • Bird’s Eye View Point cloud embedding using polar coordinates for real-time processing [50]

MinkUNet18 • Sparse Voxel Highly efficient sparse convolution operators with cubic voxel grids [8]
MinkUNet34 • Sparse Voxel Enhanced MinkUNet structure with a larger segmentation backbone [8]
Cylinder3D • Sparse Voxel Cylindrical voxel representation for balanced LiDAR points encoding [52]
SpUNet18 • Sparse Voxel MinkUNet structure with SpConv operators for efficient 3D learning [10]
SpUNet34 • Sparse Voxel Enhanced SpUNet structure with a larger segmentation backbone [10]

RPVNet • Multi-View Fusion Multi-view fusion of range, point, and voxel for modality interactions [45]
2DPASS • Multi-View Fusion Distillation from images to enhance point cloud feature learning [48]
SPVCNN18 • Multi-View Fusion Efficient sparse point-voxel convolutions & a lightweight architecture [37]
SPVCNN34 • Multi-View Fusion Enhanced SPVCNN structure with a larger segmentation backbone [37]
CPGNet • Multi-View Fusion Cascade point-grid fusion & transformation consistency regularization [25]
GFNet • Multi-View Fusion Complementary geometric flow fusion of range and bird’s eye views [34]
UniSeg • Multi-View Fusion Unified multi-view representation learning and cross-view distillation [28]

KPConv • Raw Point Input Deformable convolutions for adaptive kernel-based geometry learning [38]
PIDS1.25× • Raw Point Input Joint point interaction-dimension search with varying point densities [49]
PIDS2.0× • Raw Point Input Enhanced PIDS structure with a larger segmentation backbone [49]
PTv2 • Raw Point Input Grouped vector attention & partition-based pooling using Transformers [42]
WaffleIron • Raw Point Input Update point features by combining multi-MLPs and dense 2D CNNs [32]
PointNet++ • Raw Point Input The first hierarchical network to direct operate on point clouds [33]
DGCNN • Raw Point Input Use graph convolution to dynamically update graph in feature space [40]
PAConv • Raw Point Input Dynamic kernel assembling to adjust convolutions with point positions [46]

12 self.b = nn.Parameter(torch.zeros(1))
13 self.alpha = 0.05
14 self.threshold = threshold
15 self.softmax = nn.Softmax(dim=-1)
16

17 def forward(self, logits, gt, xyz):
18 if self.training:
19 ind = torch.argmax(logits, axis=1) == gt
20 logits_pos, gt_pos = logits[ind], gt[ind]
21 logits_neg, gt_neg = logits[˜ind], gt[˜ind]
22

23 depth = torch.norm(xyz, p=2, dim=1)
24 depth_pos, depth_neg = depth[ind], depth[˜

ind]
25

26 s = np.random.randint(int(logits_pos.shape
[0] * 1 / 3)) + 1

27 logits = torch.cat((
28 logits_neg, logits_pos[s:int(logits_pos.

shape[0] / 2) + s]
29 ), 0)
30 gt = torch.cat((
31 gt_neg, gt_pos[s:int(logits_pos.shape[0]

/ 2) + s]
32 ), 0)
33 depth = torch.cat((
34 depth_neg, depth_pos[s:int(depth_pos.

shape[0] / 2) + s]

35 ), 0)
36

37 prob = self.softmax(logits)
38

39 score = torch.sum(-prob * torch.log(prob),
dim=-1)

40 cond_ind = score < self.threshold
41

42 cal_logits_1, cal_gt_1 = logits[cond_ind],
gt[cond_ind]

43 cal_logits_2, cal_gt_2 = logits[˜cond_ind],
gt[˜cond_ind]

44

45 depth_coff = self.k * depth + self.b
46 T1 = self.T1 * depth_coff[cond_ind].

unsqueeze(dim=-1)
47 T2 = self.T2 * depth_coff[˜cond_ind].

unsqueeze(dim=-1)
48

49 cal_logits_1 = cal_logits_1 / T1
50 cal_logits_2 = cal_logits_2 / T2
51

52 cal_logits = torch.cat((cal_logits_1,
cal_logits_2), 0)

53 cal_gt = torch.cat((cal_gt_1, cal_gt_2), 0)
54

55 else:
56 prob = self.softmax(logits)
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57

58 score = torch.sum(-prob * torch.log(prob),
dim=-1)

59 cond_ind = score < self.threshold
60

61 scaled_logits, scaled_gt = logits[cond_ind],
gt[cond_ind]

62 inference_logits, inference_gt = logits[˜
cond_ind], gt[˜cond_ind]

63

64 depth = torch.norm(xyz, p=2, dim=1).to(
logits.device)

65 depth_coff = self.k * depth + self.b
66

67 T1 = self.T1 * depth_coff[cond_ind].
unsqueeze(dim=-1)

68 T2 = self.T2 * depth_coff[˜cond_ind].
unsqueeze(dim=-1)

69

70 scaled_logits = scaled_logits / T1
71 inference_logits = inference_logits / T2
72

73 cal_logits = torch.cat((scaled_logits,
inference_logits), 0)

74 cal_gt = torch.cat((scaled_gt, inference_gt)
, 0)

75

76 return cal_logits, cal_gt

Listing 2. PyTorch-style code snippet of the proposed depth-aware
scaling (DeptS).

C. Additional Quantitative Result

In this section, we supplement additional quantitative re-
sults to better support the findings and conclusions drawn in
the main body of this paper.

C.1. Depth Correlations in LiDAR Data

As discussed in Sec. 3.3 of the main body of this pa-
per, the motivation behind the depth-aware scaling method,
DeptS, stems from some interesting observations from our
experiments. We observe that traditional calibration tech-
niques, effective in 2D image-based tasks, struggle with 3D
data due to the unique characteristics of point clouds, such
as being unordered and lacking texture. Through our analy-
sis, we identified a clear correlation between calibration er-
rors, prediction entropy, and depth. Specifically, as shown
in Fig. A, LiDAR points at greater distances from the ego
vehicle often exhibit lower accuracy, yet uncalibrated mod-
els maintain high confidence in these areas, leading to sub-
stantial calibration errors [20, 22]. This overconfidence in
distant regions prompted the need for a tailored approach to
address the depth-related calibration issue.

To tackle this, we propose DeptS, a method that adjusts
model confidence based on depth information. By introduc-
ing a depth-correlation coefficient that reweights the tem-
perature scaling parameters, DeptS reduces confidence for
LiDAR points at larger depths, effectively mitigating the
overconfidence problem. This method allows for better cal-
ibration in 3D scene understanding models, particularly in
middle-to-far regions where predictions are less reliable,

0m 25m 50m
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0m 25m 50m

● Accuracy
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● Accuracy
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● Accuracy
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UnCal MetaC

TempS DeptS (Ours)

Figure A. Depth-wise confidence and accuracy statistics of un-
calibrated (UnCal), temperature scaling (TempS), meta-calibration
(MetaC), and our proposed depth-aware scaling (DeptS) methods.

leading to improved calibration performance across diverse
3D datasets.

C.2. Reliability Diagrams

We provide additional reliability diagrams in Fig. B for
a more comprehensive validation of the effectiveness of our
method. As can be seen, the 3D models without proper
calibration (UnCal) tend to suffer from huge confidence-
accuracy gaps. This inevitably leads to potential impedi-
ments to the safe operation of 3D scene understanding sys-
tems in the real world. Our compared calibration methods
show effectiveness in mitigating such issues. Compared to
the previous calibration methods, our DeptS exhibits supe-
rior performance across a wide spectrum of scenarios. This
can be credited to the depth-aware scaling operation which
encourages a more consistent prediction in depth-correlated
areas.

C.3. Domain-Shift Uncertainty Estimation

Enhancing the uncertainty estimation capability of han-
dling challenging scenarios is crucial for the practical usage
of 3D scene understanding systems [5, 6, 15, 18, 19, 21, 26,
44]. We supplement the domain-shift uncertainty estima-
tion results of FRNet [47] and SPVCNN [37] in Tab. D and
Tab. E, respectively. Similar to the observations drawn in
the main body of this paper, we find that 3D models are
vulnerable under adverse conditions. The expected calibra-
tion errors are extremely high under “fog”, “motion blur”,
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Table C. Comparisons between the proposed DeptS and state-of-
the-art network calibration methods on the validation set of Se-
manticKITTI [3]. All ECE (the lower the better) and mIoU (the
higher the better) scores reported are in percentage (%).

Method Venue MinkUNet [8] CENet [7]
ECE mIoU ECE mIoU

UnCal - 3.04% 63.05% 5.95% 60.87%

TempS [14] ICML’17 3.01% 63.05% 3.93% 60.87%
LogiS [14] ICML’17 3.08% 63.11% 3.79% 60.95%

MetaC [29] ICML’21 2.69% 62.93% 3.31% 60.81%
DeepEnsemble [23] NeurIPS’17 2.99% 64.95% 5.61% 61.70%
BatchEnsemble [41] ICLR’20 2.77% 64.70% 5.40% 62.13%

MIMO [16] ICLR’21 3.21% 63.60% 6.97% 61.62%
PackedEnsemble [24] ICLR’23 2.82% 63.88% 6.00% 59.81%

DeptS Ours 2.63% 63.47% 3.09% 61.20%

“crosstalk”, and “cross sensor” corruptions, which are com-
monly occurring scenarios in the real world. Compared to
previous calibration methods like temperature scaling and
meta-calibration, our DeptS shows a more stable perfor-
mance across different domain-shift scenarios. We believe
such an ability will become more and more important in the
future development of 3D scene understanding systems.

C.4. Comparisons to Recent Calibration Methods

In the main body of this paper, we provide a compre-
hensive benchmark study of classical network calibration
methods, such as TempS, LogiS, DiriS, and MetaC, across
a range of ten different 3D datasets. The benchmark results
verify that the proposed DepthS exhibits stronger perfor-
mance compared to these classical approaches.

To provide a more holistic evaluation of DepthS com-
pared to more recent network calibration methods, we
conduct experiments with more recent network calibration
methods, including DeepEnsemble [23], BatchEnsemble
[41], MIMO [16], and PackedEnsemble [24], on the vali-
dation set of the SemanticKITTI [3] dataset. As shown in
Tab. C, the results demonstrate that our proposed DeptS is
consistently better than both the classical and recent net-
work calibration methods.

D. Additional Qualitative Result
In this section, we supplement additional qualitative ex-

amples to better support the findings and conclusions drawn
in the main body of this paper.

D.1. Visualized Calibration Results

We provide additional visualizations to help verify the
effectiveness of the proposed model calibration model in
enhancing the model’s ability for uncertainty estimation.
As can be seen from Fig. C and Fig. D, existing 3D scene
understanding models often fail to deliver accurate uncer-
tainty estimates, resulting in potential safety-related issues.

Our proposed DeptS is capable of tackling these problems
in a holistic manner. After calibration, models can gener-
ate more accurate uncertainty estimates, leading to a more
reliable 3D scene understanding.

E. Limitation and Discussion
In this section, we elaborate on the limitations and po-

tential negative societal impact of this work.

E.1. Potential Limitations

In this work, we established the first benchmark of 3D
scene understanding from an uncertainty estimation view-
point. We also proposed DeptS to effectively calibrate 3D
models, achieving more reliable 3D scene understanding.
We foresee the following limitations that could be promis-
ing future directions.
Data Dependence. Effective model calibration heavily re-
lies on the quality and diversity of the data used. If the
dataset is not representative of real-world scenarios or lacks
diversity, the calibrated model may not generalize well
across different environments or conditions.
Evaluation Challenges. Assessing the effectiveness of cal-
ibration can be challenging, as it requires comprehensive
metrics that capture the model’s performance across a broad
range of scenarios. Standard evaluation metrics may not
fully reflect the improvements in reliability and confidence
achieved through calibration. It is enlightening to design
new metrics for a more holistic evaluation.

E.2. Potential Societal Impact

3D scene understanding often involves capturing and
analyzing detailed spatial data about environments which
might include private spaces. Additionally, calibrated mod-
els might still inherit biases present in the data or algorith-
mic design, leading to unfair or discriminatory outcomes
in certain scenarios. Addressing these issues requires more
than technical solutions; it demands careful consideration of
the ethical and societal implications of model deployment.
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Table D. The expected calibration error (ECE, the lower the better) of FRNet [47] under eight domain-shift scenarios from nuScenes-C and
SemanticKITTI-C in the Robo3D benchmark [18]. UnCal, TempS, LogiS, DiriS, MetaC, and DeptS denote the uncalibrated, temperature,
logistic, Dirichlet, meta, and our depth-aware scaling calibration methods, respectively.

Type nuScenes-C SemanticKITTI-C
UnCal TempS LogiS DiriS MetaC DeptS UnCal TempS LogiS DiriS MetaC DeptS

Clean • 2.27% 2.24% 2.22% 2.28% 2.22% 2.17% 3.46% 3.53% 3.54% 3.49% 2.83% 2.75%

Fog ◦ 3.07% 3.06% 3.07% 3.03% 3.06% 2.98% 13.48% 13.57% 13.66% 13.47% 12.68% 12.42%
Wet Ground ◦ 2.46% 2.44% 2.43% 2.50% 2.56% 2.41% 4.01% 4.09% 4.11% 3.96% 3.32% 3.28%

Snow ◦ 3.50% 3.42% 3.53% 3.60% 2.93% 2.78% 7.28% 7.39% 7.49% 7.51% 6.65% 6.63%
Motion Blur ◦ 33.74% 33.48% 33.15% 32.15% 30.62% 28.43% 5.93% 6.03% 6.08% 6.55% 5.04% 4.92%

Beam Missing ◦ 2.52% 2.51% 2.50% 2.58% 2.91% 2.48% 2.71% 2.71% 2.72% 2.71% 2.40% 2.36%
Crosstalk ◦ 2.40% 2.39% 2.36% 2.38% 2.72% 2.35% 20.87% 21.16% 21.03% 19.84% 15.36% 14.79%

Incomplete Echo ◦ 2.36% 2.30% 2.32% 2.34% 2.28% 2.21% 3.77% 3.86% 3.88% 3.82% 3.13% 3.02%
Cross Sensor ◦ 5.24% 5.20% 5.29% 5.88% 5.34% 5.11% 5.08% 5.11% 5.17% 4.64% 3.91% 3.74%

Average • 6.91% 6.85% 6.83% 6.81% 6.55% 6.09% 7.89% 7.99% 8.02% 7.81% 6.56% 6.40%

Table E. The expected calibration error (ECE, the lower the better) of SPVCNN [37] under eight domain-shift scenarios from nuScenes-C
and SemanticKITTI-C in the Robo3D benchmark [18]. UnCal, TempS, LogiS, DiriS, MetaC, and DeptS denote the uncalibrated, tempera-
ture, logistic, Dirichlet, meta, and our depth-aware scaling calibration methods, respectively.

Type nuScenes-C SemanticKITTI-C
UnCal TempS LogiS DiriS MetaC DeptS UnCal TempS LogiS DiriS MetaC DeptS

Clean • 2.57% 2.44% 2.49% 2.54% 2.40% 2.31% 3.46% 2.90% 3.07% 3.41% 2.36% 2.32%

Fog ◦ 8.53% 8.12% 8.23% 8.54% 7.38% 7.34% 13.06% 12.33% 12.57% 13.23% 11.15% 11.10%
Wet Ground ◦ 2.80% 2.63% 2.68% 2.72% 2.63% 2.58% 3.52% 3.02% 3.19% 3.49% 2.76% 2.63%

Snow ◦ 8.49% 7.76% 7.97% 8.35% 6.87% 6.61% 8.50% 7.70% 7.94% 8.41% 6.31% 6.26%
Motion Blur ◦ 9.18% 8.80% 9.00% 9.33% 8.11% 7.98% 21.01% 19.92% 20.28% 20.41% 17.86% 17.22%

Beam Missing ◦ 2.88% 2.70% 2.74% 2.79% 2.72% 2.67% 3.01% 2.64% 2.73% 3.04% 2.48% 2.45%
Crosstalk ◦ 11.76% 11.09% 11.33% 12.01% 9.82% 9.48% 4.66% 4.00% 4.17% 4.49% 3.58% 3.31%

Incomplete Echo ◦ 2.40% 2.28% 2.33% 2.39% 2.30% 2.24% 3.54% 3.08% 3.24% 3.58% 2.56% 2.52%
Cross Sensor ◦ 4.80% 4.43% 4.52% 4.57% 4.22% 4.20% 3.27% 2.83% 2.96% 3.36% 2.81% 2.78%

Average • 6.36% 5.98% 6.10% 6.34% 5.51% 5.39% 7.57% 6.94% 7.14% 7.50% 6.19% 6.03%
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Figure B. The reliability diagrams of randomly sampled model predictions generated by the CENet [7] model on the validation set of
the SemanticKITTI [3] dataset. UnCal, TempS, LogiS, MetaC, and DeptS denote the uncalibrated, temperature, logistic, meta, and our
proposed depth-aware scaling calibration methods, respectively.
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Figure C. The point-wise expected calibration error (ECE) of existing 3D semantic segmentation models without calibration (UnCal) and
with our depth-aware scaling (DeptS). Our approach is capable of delivering accurate uncertainty estimates. The colormap goes from dark
to light denotes low and high error rates, respectively.
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Figure D. The point-wise expected calibration error (ECE) of existing 3D semantic segmentation models without calibration (UnCal) and
with our depth-aware scaling (DeptS). Our approach is capable of delivering accurate uncertainty estimates. The colormap goes from dark
to light denotes low and high error rates, respectively.
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F. Public Resources Used
In this section, we acknowledge the use of the following

public resources, during the course of this work.

F.1. Public Codebase Used

We acknowledge the use of the following public code-
base during this work:

• MMCV2 . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0

• MMDetection3 . . . . . . . . . . . . . . . . .Apache License 2.0

• MMDetection3D4 . . . . . . . . . . . . . . Apache License 2.0

• MMEngine5 . . . . . . . . . . . . . . . . . . . Apache License 2.0

• OpenPCSeg6 . . . . . . . . . . . . . . . . . . Apache License 2.0

• Pointcept7 . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License

F.2. Public Datasets Used

We acknowledge the use of the following public datasets
during this work:

• nuScenes8 . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0

• nuScenes-devkit9 . . . . . . . . . . . . . . Apache License 2.0

• SemanticKITTI10 . . . . . . . . . . . . . . . CC BY-NC-SA 4.0

• SemanticKITTI-API11 . . . . . . . . . . . . . . . . MIT License

• WaymoOpenDataset12 . . . . . . Waymo Dataset License

• SemanticPOSS13 . . . . . . . . . . . . . . . CC BY-NC-SA 3.0

• Synth4D14 . . . . . . . . . . . . . . . . . . . . . . . GPL-3.0 License

• SemanticSTF15 . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0

• ScribbleKITTI16 . . . . . . . . . . . . . . . . . . . . . . . . Unknown

• S3DIS17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Unknown

• Robo3D18 . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
2https://github.com/open-mmlab/mmcv.
3https://github.com/open-mmlab/mmdetection.
4https://github.com/open-mmlab/mmdetection3d.
5https://github.com/open-mmlab/mmengine.
6https://github.com/PJLab-ADG/OpenPCSeg.
7https://github.com/Pointcept/Pointcept.
8https://www.nuscenes.org/nuscenes.
9https://github.com/nutonomy/nuscenes-devkit.

10http://semantic-kitti.org.
11https://github.com/PRBonn/semantic-kitti-api.
12https://waymo.com/open.
13http://www.poss.pku.edu.cn/semanticposs.html.
14https : / / github . com / saltoricristiano / gipso -

sfouda.
15https://github.com/xiaoaoran/SemanticSTF.
16https://github.com/ouenal/scribblekitti.
17http : / / buildingparser . stanford . edu / dataset .

html.
18https://github.com/ldkong1205/Robo3D.

F.3. Public Implementations Used

We acknowledge the use of the following implementa-
tions during this work:

• lidar-bonnetal19 . . . . . . . . . . . . . . . . . . . . . . MIT License

• SalsaNext20 . . . . . . . . . . . . . . . . . . . . . . . . . .MIT License

• FIDNet21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown

• CENet22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MIT License

• rangevit23 . . . . . . . . . . . . . . . . . . . . . Apache License 2.0

• FRNet24 . . . . . . . . . . . . . . . . . . . . . . .Apache License 2.0

• PolarSeg25 . . . . . . . . . . . . . . . . . . BSD 3-Clause License

• MinkowskiEngine26 . . . . . . . . . . . . . . . . . . MIT License

• TorchSparse27 . . . . . . . . . . . . . . . . . . . . . . . MIT License

• SPVNAS28 . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License

• Cylinder3D29 . . . . . . . . . . . . . . . . . . Apache License 2.0

• spconv30 . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0

• 2DPASS31 . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License

• CPGNet32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown

• GFNet33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown

• KPConv34 . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License

• PIDS35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License

• PointTransformerV236 . . . . . . . . . . . . . . . . . . . Unknown
19https://github.com/PRBonn/lidar-bonnetal.
20https://github.com/TiagoCortinhal/SalsaNext.
21https : / / github . com / placeforyiming / IROS21 -

FIDNet-SemanticKITTI.
22https://github.com/huixiancheng/CENet.
23https://github.com/valeoai/rangevit.
24https://github.com/Xiangxu-0103/FRNet.
25https://github.com/edwardzhou130/PolarSeg.
26https://github.com/NVIDIA/MinkowskiEngine.
27https://github.com/mit-han-lab/torchsparse.
28https://github.com/mit-han-lab/spvnas.
29https://github.com/xinge008/Cylinder3D.
30https://github.com/traveller59/spconv.
31https://github.com/yanx27/2DPASS.
32https://github.com/GangZhang842/CPGNet.
33https://github.com/haibo-qiu/GFNet.
34https://github.com/HuguesTHOMAS/KPConv.
35https : / / github . com / lordzth666 / WACV23 _ PIDS -

Joint-Point-Interaction-Dimension-Search-for-3D-
Point-Cloud.

36https : / / github . com / Pointcept /
PointTransformerV2.
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• WaffleIron37 . . . . . . . . . . . . . . . . . . . Apache License 2.0

• selectivecal38 . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown

• LaserMix39 . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0

• PolarMix40 . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
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