
Towards Unsupervised Blind Face Restoration using Diffusion Prior
Supplementary Material

Tianshu Kuai2,†, Sina Honari1, Igor Gilitschenski2,3, Alex Levinshtein1

1Samsung AI Center Toronto, 2University of Toronto, 3Vector Institute for AI

Acknowledgements. This work was done at Samsung AI
Center Toronto. It was funded by Mitacs and Samsung Re-
search, Samsung Electronics Co., Ltd.

A. Summary
In Appendix B, we provide more details of our syn-

thetic datasets. Appendix C contains additional implemen-
tation details of pre-trained models and fine-tuning. We
present additional qualitative and quantitative results along
with more ablation studies in Appendix D. We provide more
discussions on other relevant components of our approach
in Appendix E. Finally, Appendix F and Appendix G dis-
cuss the limitations and the potential negative impact of our
method.

B. Details on Synthetic Datasets
B.1. Pre-training Dataset

To perform the pre-training, we adopt the low-quality
data synthesis pipeline from other literature [12, 13, 26] to
create input-GT training data pairs:

ILQ =
{[

(IHQ ∗ kσ)↓r
+ nδ

]
JPEGq

}
↑r

, (1)

where a high-quality image IHQ is first convolved with a
Gaussian blur kernel kσ of kernel size σ and downsampled
by a factor of r. Gaussian noise with standard deviation of
δ is added to the downsampled image. Then JPEG com-
pression of quality factor q and upsampling by a factor of
r are applied to synthesize the low-quality counterpart ILQ.
For pre-training the SwinIR [14] model, we use randomly
sampled σ, r, δ, and q from [0.1, 15], [0.8, 32], [0, 20],
and [30, 100], respectively. We use the pre-trained Code-
Former [33] from the authors. This model is pre-trained
with randomly sampled σ, r, δ, and q from [1, 15], [1, 30],
[0, 20], and [30, 90].

B.2. Our Synthetic Dataset

As mobile phones become more accessible, significant
number of images are captured with phone cameras nowa-

†Work done during an internship at Samsung AI Center Toronto.

days. We can simulate more realistic low-quality images
by taking the camera ISP and RAW noise models into con-
sideration. Specifically, we generate the low-quality images
from high-quality ones as:

ILQ =
{
ISP

[
ISP−1((IHQ)↓r

) + nc

]}
↑r

, (2)

where (ISP−1) is an image unprocessing pipeline [24] that
converts a sRGB image to RAW, (ISP) is the reverse pro-
cedure of image unprocessing to render the sRGB image
from RAW image [24], r is the downsampling and upsam-
pling factor, and nc is the simulated RAW camera noise.
For the simulated noise, we apply the commonly used Het-
eroscedastic Gaussian models [3, 16, 20] to generate real-
istic camera noise. We construct our synthetic datasets at
moderate and severe noise levels, at ISO levels of (∼ 1600)
and (∼ 3200), respectively. For each noise level, we also
generate two separate datasets at 4× downsampling and 8×
downsampling, which gives us four datasets in total. For
each dataset, we use the same 3,000 high-quality images
from the CelebA-HQ dataset [10]. We take 2,500 of them
for generating pesudo targets and fine-tuning the pre-trained
models, and the rest of the 500 images for evaluation. We
do not use the GT images during pseudo target generation
and fine-tuning. For fine-tuning, we start with the same pre-
trained checkpoint for all four dataset setups.

C. Implementation Details
C.1. Pre-trained Models

In our work, both SwinIR [14] and CodeFormer [33] are
pre-trained on the entire FFHQ dataset [11], which con-
tains 70,000 high-quality face images with resolution of
512×512. The training data pairs are generated by follow-
ing the degradation pipeline described in Eq. (1).

We train the SwinIR from scratch using the AdamW op-
timizer [19] with initial learning rate of 1e−4 and update the
learning rate following cosine annealing [18]. We use batch
size of 16 and train the model for 800,000 iterations in total
with image-level L1 loss, perceptual (LPIPS) loss [32], and
adversarial (GAN) loss [5]. For losses, we use the same set

1

Encoder Trans. CFT PSNR↑ SSIM↑ LPIPS↓ FID↓ MANIQA↑ MUSIQ↑
✓ 22.38 0.5816 0.4391 40.59 0.6568 75.60
✓ ✓ 22.85 0.6036 0.4258 41.21 0.6581 75.76
✓ ✓ ✓ 23.01 0.6556 0.4225 47.67 0.6295 71.13

Table 1. Different fine-tuning setups for CodeFormer. We compare the three setups of fine-tuning CodeFormer on 4× downsampling
data at severe noise level.

of losses and the weights as the fine-tuning setup described
in the main paper.

For CodeFormer, we directly adopt the pre-trained
checkpoint from the CodeFormer authors [33]. It is pre-
trained following their 3-stage training scheme. Please refer
to their paper for more details on CodeFormer pre-training.

For the unconditional face diffusion model used in our
pipeline, we follow the model architecture from [2] and
the adopt the model weights from [31]. This model is
also trained on FFHQ dataset [11]. The total number of
timesteps is T = 1000 and we follow techniques from [22]
to accelerate the denoising process by reducing the total
number discrete timesteps down to 250.

C.2. Fine-tuning

For fine-tuning the pre-trained SwinIR model, we use
the same optimizer, initial learning rate, and batch size as
in pre-training (Appendix C.1). We fine-tune the SwinIR
model with input and pseudo target pairs for 20,000 itera-
tions. The setup for the loss functions has been described in
the main paper.

For CodeFormer, we only fine-tune its encoder and trans-
former module while keeping the codebook, decoder, and
the controllable feature transformation module (CFT) fixed.
We use the code-level loss Lfeat

code and the cross-entropy loss
on the code prediction Ltoken

code to fine-tune the encoder and
transformer module (same set of losses used in stage-II
training of CodeFormer):

L = Lfeat
code + λtokenLtoken

code , (3)

where λtoken is the weight for the cross-entropy loss on the
code prediction.

Note that no image-level loss is used since we found em-
pirically that only fine-tuning the encoder and transformer
module provides the best performance, and there is no need
for image-level losses when only fine-tuning these two parts
of the model. We compare the results of different fine-
tuning setups in Tab. 1. Fine-tuning the encoder and the
transformer module provides the best balance between fi-
delity and quality among all the setups. Fine-tuning all three
components obtains better PSNR, SSIM, and LPIPS. How-
ever, there is a compromise in the image quality as reflected
in FID, MANIQA, and MUSIQ metrics.

D. Additional Results

D.1. Qualitative Results

We show additional qualitative results on our synthetic
datasets in Figs. 7 and 8. We also provide qualitative results
on our Wider-Test-200 set in Fig. 6.

D.2. Quantitative Results

We provide detailed results for both SwinIR and Code-
Former on each synthetic dataset setup. The results of
the pre-trained, fine-tuned SwinIR along with the SwinIR-
based targets are included in Tab. 10. For CodeFormer, we
provide the results in a similar manner as in the main pa-
per, but for each noise level separately. That is, we show
the CodeFormer results in Tabs. 11 and 12 for moderate
and severe noise levels, respectively. Note that for all the
models, we adopt the scripts and checkpoints from their au-
thors, and run the models with their suggested parameters
and setups for blind face restoration. The pre-trained Code-
Former achieves the best results on 4× moderate noise lev-
els because it is robust enough to handle such inputs, how-
ever it cannot completely get rid of all artifacts (See Fig. 7).
Fine-tuning this model effectively removes the remaining
artifacts, but would slightly degrade its quantitative per-
formance due to small content distortion in pseudo tar-
gets. However, on more severe degradations where the pre-
trained model’s performance degrades, our approach con-
sistently improves upon the pre-trained model. In addition,
we provide the results of fine-tuning the pre-trained model
using GT clean images as pseudo targets (i.e. supervised
fine-tuning) for both model architectures in Tabs. 13 and 14.
They serve as the performance upper bound for our problem
setup.

D.2.1 Mild degradations

For completeness, we follow the same approach as medium
and severe degradations to construct a fine-tuning dataset
with weaker degradation using ISO level of (∼ 800). We
refer it as mild degradation and report the results in Tab. 22.
The results show consistent improvement of our fine-tuned
model compared to the pre-trained ones.

N = 8

(a)

Low-Quality

Restoration

 K = 600
L = 180

 K = 600
L = 0

 K = 900
L = 360

 K = L = 360

GT

Input K = L = 180
 K = 600

L = 360

N = 16 N = 32

N = 16(b)
 K = L = 600

(c)

Different Low Pass Filter Downsampling Factor

Different Timestep Window for Low Freq. Constrained Denoising

y

y0

y

x0
Unconditional Denoising Only

Figure 1. Effects of low pass downsampling factor and timestep choices on SwinIR pseudo target. In (a) we show the effects
of adjusting the low pass filter downsampling factor (N); In (b) we show the effects of different timestep windows for low frequency
constrained denoising (K and L); In (c) we show the pseudo targets if only unconditional denoising is applied (zoom in for details).

N = 4

(a)

Low-Quality

Restoration

 K = 600
L = 180

 K = 600
L = 0

 K = 900
L = 360

 K = L = 360

GT

Input K = L = 180
 K = 600

L = 360

N = 8 N = 16

N = 8(b)
 K = L = 600

(c)

Different Low Pass Filter Downsampling Factor

Different Timestep Window for Low Freq. Constrained Denoising

y

y0

y

x0
Unconditional Denoising Only

Figure 2. Effects of low pass downsampling factor and timestep choices on CodeFormer pseudo target. In (a) we show the effects
of adjusting the low pass filter downsampling factor (N); In (b) we show the effects of different timestep windows for low frequency
constrained denoising (K and L); In (c) we show the pseudo targets if only unconditional denoising is applied (zoom in for details).

D.2.2 Comparison on face recognition metrics

We report two face recognition metrics: Deg. [27] and
LMD [7] in Tab. 21. Our pseudo targets obtain the best
LMD and the second best Deg. Among the diffusion-free
models, our model obtains the best results on PSNR, SSIM,
LPIPS, and FID, while obtaining lower performance on
LMD and Deg. We observe that the models have to make
a compromise between fidelity and quality. While the fa-
cial lankmark is deteriorated slightly, the reference-based
metrics of PSNR, SSIM, and LPIPS still show superior per-

formance of our proposed approach.

D.2.3 Runtime and memory efficiency

In Tab. 23, we compare the memory usage and inference
time of our model with others on a Nvidia RTX 3090 GPU.
For diffusion-based models, even if we reduce the number
of time-steps to only one step, our method is more efficient
in terms of both run-time and memory. This is still regard-
less of the drop in accuracy of diffusion-based models that
one-step diffusion would incur, as shown in [21, 25].

D.3. Additional Ablation Studies

D.3.1 Effects of timesteps and low pass filter choices

The choices for timesteps of when to start and stop the low
frequency content constraint and the low pass filter’s down-
sampling factor have significant impact on the quality and
fidelity of the pseudo targets. In Figs. 1 and 2, we show
the effects of the varying these parameters on SwinIR and
CodeFormer pseudo targets. We provide quantitative abla-
tion studies on the pseudo targets for both SwinIR [14] and
CodeFormer [33] in Tabs. 15 and 16, as well as the results
of fine-tuning using the corresponding targets in Tabs. 17
and 18. Our selection of the parameters provide the best
balance between perceptual quality and fidelity.

D.3.2 Loss functions setup for fine-tuning

The performance of our approach depends on the fine-
tuning of the pre-trained model. In Tab. 2, we provide the
results of a fine-tuned SwinIR model with different combi-
nations of the fine-tuning losses. We use the same set of
input and pseudo target data pairs for all the setups in this
table and fine-tune the model for the same number of it-
erations. Using LL1 and LLPIPS together obtains better
PSNR, however, it obtains worse results on perceptual met-
rics. When applying all the three losses, the model’s results
are in the best perceptual quality, achieving the best LPIPS
and FID among all the setups. We provide the ablation on
the fine-tuning loss functions for CodeFormer in the supple-
mentary material.

D.3.3 Weights of the loss functions

In Tab. 3, we compare the results of fine-tuning SwinIR
with different weights for the perceptual loss (LLPIPS) and
adversarial loss (LGAN). In our experiments, we set the
weights of these two losses to be 0.1, as this setup gives the
best perceptual quality among all the combinations while
maintaining good fidelity. We also conduct ablation study
on the weight of the cross-entropy loss (Ltoken

code) for Code-
Former fine-tuning. As shown in Tab. 4, the results of the
fine-tuned model do not vary much with different weights.

D.3.4 Number of images used in fine-tuning

We investigate the effects of the fine-tuning dataset size on
both SwinIR and CodeFormer. In Tab. 4 in the main pa-
per and Tab. 5, we compare the results of the fine-tuning
models with pre-trained models using different sizes of the
fine-tuning dataset. We gain consistent improvements with
our approach on CodeFormer even with 20 images, thanks
to the discrete codebook that prevents potential over-fitting.

In Fig. 9, we evaluate the impact of gradually increas-
ing the number of images used in fine-tuning on the fine-

tuned restoration model performance. As can be observed,
more images help improve the restoration model beyond the
pseudo targets. In particular, training on such images adds a
prior to the restoration model on how to handle the observed
artifacts, allowing the model to learn on the ensemble of tar-
get degradations, which is not the case for pseudo-targets.

E. More Analysis and Discussions

E.1. Pseudo Target Generation vs. Other Diffusion-
based Methods

Here we provide more detailed comparison between
our pseudo target generation process and other relevant
diffusion-based methods. Specifically, we compare the de-
tailed procedure of our pseudo target generation with Dif-
Face [31], ILVR [1], DDA [4], PG-Diff [30], DiffBIR [15],
and DR2 [29]. We summarize the detailed procedures in Al-
gorithms 1 to 7, respectively.

To highlight the main differences, DifFace [31] adds
Gaussian noise to the output of a preprocessing model [14],
and applies standard unconditional denoising to get the
clean image. ILVR [1] and DDA [4] apply similar low
frequency content guidance, but for all the denoising
timesteps. Note that despite ILVR targeting tasks of condi-
tional image generation and image editing, and DDA target-
ing domain adaptation for image classification, their denois-
ing diffusion process also utilizes low frequency content as
guidance, which in theory could be applied to the task of
blind image restoration. However, as they apply such guid-
ance for all denoising timesteps, the results would be blurry
and still contain artifacts due to inaccurate guidance from
degraded input image. PG-Diff [30] and DiffBIR [15] use
the output of a pre-processing model [14, 28] on the input
image to guide the denoising process. PG-Diff uses an un-
conditional face diffusion model [2], while DiffBIR uses
a fine-tuned stable-diffusion model [23]. DR2 [29] stops
the low frequency content constraining at a pre-defined
timestep, performs a one-step project to timestep t = 0,
and relies on a pre-trained restoration model [6] as a post-
processing step to restore the high-frequency details. It also
downsamples the input by a factor of 2 before applying a
256×256 face diffusion model, and upsamples the result-
ing image from the diffusion model to restore the original
resolution before applying the pre-trained post-processing
model. This downsampling procedure helps reducing the
amount of artifacts in the image before passing it to the dif-
fusion model, at the expense losing finer details.

Since DR2 [29] achieves comparable performance as
our targets on Wider-Test-200 set (better on MANIQA and
MUSIQ while worse on FID), we perform experiments of
fine-tuning pre-trained models with DR2’s results as pseudo
targets. We compare the results of fine-tuning SwinIR
and CodeFormer with our pseudo targets and DR2 outputs

L1 LLPIPS LGAN PSNR↑ SSIM↑ LPIPS↓ FID↓ MANIQA↑ MUSIQ↑
✓ 25.06 0.7207 0.4587 92.04 0.3151 41.72
✓ ✓ 25.30 0.7106 0.3908 47.94 0.5545 59.30
✓ ✓ 24.52 0.6587 0.4226 50.70 0.5869 72.88
✓ ✓ ✓ 24.75 0.6676 0.3853 41.42 0.6023 73.36

Table 2. Different setups of fine-tuning losses for SwinIR. We compare different loss functions setup of fine-tuning SwinIR on 4×
downsampling data at moderate noise level.

L1 LLPIPS LGAN PSNR↑ SSIM↑ LPIPS↓ FID↓ MANIQA↑ MUSIQ↑
1.0 1.0 1.0 24.18 0.6656 0.3913 42.57 0.6022 72.99
1.0 0.1 1.0 23.83 0.6362 0.3881 41.80 0.6107 73.47
1.0 1.0 0.1 24.89 0.6899 0.3873 46.37 0.6000 69.83
1.0 0.1 0.1 24.75 0.6676 0.3853 41.42 0.6023 73.36
1.0 0.01 1.0 23.16 0.6133 0.4034 46.48 0.5943 73.82
1.0 0.01 0.1 24.39 0.6531 0.3889 41.81 0.6247 74.77
1.0 0.01 0.01 24.87 0.6801 0.3890 44.36 0.6020 71.10
1.0 0.1 0.01 25.16 0.6943 0.3850 45.82 0.6002 69.54
1.0 1 0.01 25.17 0.7041 0.3890 46.73 0.5863 65.11

Table 3. Ablation study on the weights of the fine-tuning losses for SwinIR. We compare the results of fine-tuning pre-trained SwinIR
with different loss weights on 4× downsampling data at moderate noise level. Red and blue indicate the best and the second best results.
Bold indicates our selection.

in Tab. 6. With our pseudo targets, both fine-tuned models
can produce more realistic results.

E.2. CodeFormer Fidelity Weight

CodeFormer [33] has a unique controllable features
transformation (CFT) module that controls how much infor-
mation from the encoder is fused into the decoder. It allows
users to control the balance between the quality (w = 0)
and fidelity (w = 1) of the restoration, by simplying mod-
ifying this fidelity weight w ∈ [0, 1]. We set the w = 0.5
(default value suggested by CodeFormer) when we run the
pre-trained and the fine-tuned CodeFormer in this paper for
a fair comparison between the two. We also show the com-
parison of our fine-tuned CodeFormer with its pre-trained
counterpart at different fidelity weights in Fig. 3. Our
fine-tuned model is consistently better than the pre-trained
model. In addition, the fine-tuned model achieves the best
results at w = 1.0. We believe that fine-tuning improves
the quality of the extracted features from the encoder, thus
more information from the encoder flowing into the decoder
is helpful in terms of both restoration quality and fidelity.

E.3. Pseudo Target Generation Without Pre-trained
Restoration Model

As shown in the qualitative results in the main paper and
in Fig. 7 in this supplementary material, a pre-trained model
effectively removes some artifacts from the inputs, while

preserving good fidelity of the image content. Better initial
images for pseudo target generation leads to better pseudo
target quality, as shown in Fig. 4. The pre-trained Code-
Former is able to produce a cleaner image for the pseudo
target generation process, despite that its output still con-
tains artifacts. These artifacts are cleaned up by our pseudo
target generation process. Using the better images also ben-
efit the low-frequency constrained denoising process as we
will have a more accurate and less noisy constraint applied
in target generation. We also provide quantitative results
for this behaviour in Tab. 19, where the pseudo targets gen-
erated from a pre-trained CodeFormer’s outputs are con-
sistently better than the ones generated directly from de-
graded inputs, and ultimately make the fine-tuned Code-
Former models better (see Tab. 20) at all noise levels and
downsampling levels.

E.4. Pseudo Targets Fidelity - Quality Trade-off

Our pseudo targets may not be perfectly aligned with in-
puts in terms of fidelity, because the unconditional diffu-
sion model is trained for generation rather than for restora-
tion. The low-frequency constraint during the diffusion de-
noising process does not ensure exact matching in high-
frequency details. Such process improves the image qual-
ity at the expense of fidelity. The property of an uncon-
ditional diffusion model is that, starting the denoising pro-
cess at higher timesteps (more Gaussian noise injected into

Lfeat
code Ltoken

code PSNR↑ SSIM↑ LPIPS↓ FID↓ MANIQA↑ MUSIQ↑
1.0 1.0 22.31 0.5856 0.4282 42.16 0.6574 75.84
1.0 0.5 22.28 0.5848 0.4290 41.72 0.6580 75.84
1.0 0.1 22.26 0.5833 0.4303 42.18 0.6578 75.81

Table 4. Ablation study on the weights of the fine-tuning losses for CodeFormer. We compare the results of fine-tuning pre-trained
CodeFormer with different weights on 4× downsampling data at severe noise level. Bold indicates our selection.

Number of images PSNR↑ SSIM↑ LPIPS↓ FID↓ MANIQA↑ MUSIQ↑
Pre-trained 22.90 0.5810 0.4420 53.02 0.6371 74.96

20 23.42 0.6288 0.4276 46.08 0.6535 74.93
100 23.28 0.6189 0.4259 44.25 0.6562 75.40
500 22.99 0.6080 0.4262 42.34 0.6590 75.63
1000 22.88 0.6038 0.4266 41.81 0.6590 75.76
2500 22.85 0.6036 0.4258 41.21 0.6581 75.76

Table 5. Ablation Study on the fine-tuning dataset size on CodeFormer. We compare the results of fine-tuning pre-trained CodeFormer
with different numbers of images used in fine-tuning on 4× downsampling data at severe noise level.

Model Targets MANIQA↑ MUSIQ↑ FID↓

Fine-tuned SwinIR DR2 0.5740 69.27 89.48
Ours 0.6093 74.15 88.21

Fine-tuned CodeFormer DR2 0.6386 72.63 90.59
Ours 0.6343 73.02 84.65

Table 6. Our pseudo targets vs. DR2 [29] as targets. We com-
pare the results of fine-tuning models with our pseudo targets and
with DR2 outputs as targets on the Wider-Test-200 set.

Setup PSNR↑ SSIM↑ LPIPS↓ FID-GT↓ FID-FFHQ↓
T = 180 22.83 0.5981 0.4498 47.41 71.17
T = 600 20.11 0.5746 0.4857 41.94 59.43
T = 900 12.96 0.4066 0.7017 66.98 49.49

Ours 23.15 0.6507 0.4364 37.42 67.40

Table 7. Pseudo targets fidelity vs. quality. We compare the
pseudo targets in different target generation setups on 4× down-
sampling data at severe noise level. The first three rows corre-
spond to unconditional denoising with different starting timesteps,
and the last row corresponds to our target generation setup in this
work. Note that specifically in this table, FID-GT refers to the FID
score against the statistics of the ground-truth image set (measures
a combination of fidelity and quality, while FID-FFHQ refers to
the FID score against the FFHQ dataset statistics (measures over-
all face image quality and not fidelity). As described in the Metrics
section of the main paper, we report FID-GT as the FID score for
evaluations on synthetic datasets in all the other tables of this work,
which aligns better with the targets of interest when available.

the image) will apply more distortion to the content of the
denoised image, which leads to worse fidelity but higher

overall image quality (higher FID-FFHQ score in Tab. 7).
This means that one can generate pseudo targets with great
image quality while completely losing the identity informa-
tion of the face to be restored, as shown in Fig. 5. Starting at
timestep of 900 for a 1,000 steps diffusion model provides
pseudo target of another person. Such case will be cate-
stropic for the later fine-tuning because the networks are
optimized with image-level losses (L1 and LPIPS losses),
which has strict requirements in terms of fidelity between
target and input. As shown in Tab. 8, fine-tuning with in-
consistent targets (T = 900) lead to very poor results. Our
setup with constrained denoising process finds a good bal-
ance between fidelity and quality for the pseudo targets,
which is an essential part of its success.

E.5. Improved DifFace and DiffBIR

DifFace [31] and DiffBIR [15] are two diffusion-based
approaches that apply a pre-processing restoration model
first to remove some artifacts on the images before pass-
ing images to the diffusion models. Both methods use
the same pre-trained restoration model, a SwinIR [14] that
is pre-trained on the FFHQ dataset [11] with MSE loss
only. The motivation behind this choice of loss is that this
model would output blurry faces, but with good fidelity.
The diffusion models are then responsible for generating
high-frequency details. However, these two methods would
fail if this pre-trained SwinIR fails on inputs with out-of-
distribution degradation. In Tab. 9, we show the improve-
ments of DifFace and DiffBIR after using our fine-tuning
pipeline. Note that this fine-tuned SwinIR is based on the
pre-trained SwinIR with MSE loss only, not from the pre-
trained SwinIR we used for other experiments in this work.

Figure 3. CodeFormer results using different fidelity weights. We plot the results of pre-trained and fine-tuned CodeFormer when using
different fidelity weights at testing time on 4× downsampling data at severe noise level.

Input Pre-trained
Model Output

Pseudo Target
without Pre-

trained Model

Pseudo Target
with Pre-

trained Model

Figure 4. Pseudo target quality without pre-trained restoration
model. We show the pseudo targets with and without running a
pre-trained CodeFormer before applying target generation.

Figure 5. Pseudo target quality vs. fidelity. We show the pseudo
targets generated with unconditional denosing up to timestep of
900 and with our optimal timestep setup (combination of low
frequency constrained denoising and unconditional denoising).
When the timestep is large enough, the generated target becomes
a completely different face.

The results show that with our fine-tuning approach, one
can improve methods that rely on a restoration model for
pre-processing.

F. Limitations

Our work relies on a robust pre-trained diffusion model,
and the diffusion model must be pre-trained to generate im-
ages of the same category as the low-quality inputs. This
similarity requirement is only in terms of the image cate-
gories (e.g. faces, animals, natural images), while the types
of degradations in the low-quality inputs are independent
from the pre-trained diffusion model. As part of the in-
puts to our pipeline, a set of unpaired low-quality images is

Pseudo Target Setup PSNR↑ SSIM↑ LPIPS↓ FID↓
T = 180 22.81 0.5849 0.4294 46.00
T = 600 21.45 0.5487 0.4581 48.72
T = 900 16.90 0.3591 0.5673 104.54

Ours 22.85 0.6036 0.4258 41.21

Table 8. Effects of pseudo targets fidelity vs. quality in fine-
tuning. We compare the results of fine-tuning using pseudo targets
in different target generation setups on 4× downsampling data at
severe noise level. The first three rows correspond to targets with
unconditional denoising with different starting timesteps, and the
last row corresponds to our targets generation setup in this work.

needed for the purpose of fine-tuning the pre-trained model.
As shown in Tab. 4 in the main paper, despite being able
to improve the pre-trained model’s performance, having a
small set of images with only ∼20 images can potentially
lead to over-fitting for certain models [14], which deterio-
rates restoration quality. In addition, one may need to man-
ually modify the downsampling factor N for low pass fil-
ter based on the quality of the pre-trained model’s restora-
tion (more severe artifacts require larger N) although we’ve
shown that using timesteps of K = 600 and L = 360 are
robust to various quality of restoration. If the pre-trained
restoration model fails completely, our pseudo target gen-
eration will not output feasible target either as it depends
on the restoration model’s output. We suggest the users to
directly feed input image to our pseudo target generation
pipeline in this extreme case.

G. Potential Negative Impact

In this work, we use the FFHQ dataset [11] to pre-train
and use a subset of the CelebA-HQ [10] to fine-tune our
models. The two datasets are publicly available, where
FFHQ consists of 70,000 high-quality face images crawled
from Flickr and CelebA-HQ contains high-resolution ver-
sion of the face images of different celebrities from CelebA

Model With which SwinIR? PSNR↑ SSIM↑ LPIPS↓ FID↓

DifFace [31] Pre-trained 21.21 0.5645 0.5504 84.99
Fine-tuned 23.11 0.6210 0.4438 60.38

DiffBIR [15] Pre-trained 21.59 0.5371 0.6172 100.81
Fine-tuned 22.89 0.5769 0.4750 55.78

Table 9. Improved DifFace [31] and DiffBIR [15] with fine-
tuned SwinIR. We show the improvements gained for DifFace
and DiffBIR by replacing their pre-trained SwinIR with the fine-
tuned counterpart on our synthetic datasets.

dataset [17]. Our trained models will inherit the existing
bias in these face datasets, particularly the imbalance in the
distribution of gender, ethnicity, and age [9]. This could
potentially limit the model’s performance on certain under-
represented groups of population. It also leads to perpet-
uation and amplification of societal biases within the cur-
rent datasets. A large-scale face image dataset that is more
balanced and diverse is needed for future research. In our
Wider-Test-200 dataset, we make the effort to improve the
diversity of the faces in our test sets by including testing
images from different gender, ethnicity, and age groups. In
addition, the misuse of our pipeline will pose ethical issues
on potential personal privacy breach and illegal manipula-
tion of face images.

Noise 4× Downsampling 8× Downsampling
Level PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

Pre-trained moderate 21.28 0.5744 0.5446 74.12 21.28 0.5744 0.5446 99.44
Pseudo targets moderate 22.89 0.6317 0.4444 41.13 21.23 0.5819 0.5168 77.89
Fine-tuned moderate 24.75 0.6676 0.3853 41.42 23.28 0.6206 0.4348 68.25

Pre-trained severe 20.92 0.5444 0.5842 120.44 19.00 0.4813 0.6435 152.90
Pseudo targets severe 21.24 0.5871 0.4950 47.47 19.53 0.5300 0.5822 86.01
Fine-tuned severe 23.41 0.6284 0.4156 49.46 21.91 0.5720 0.4821 115.97

Table 10. SwinIR’s improvements after fine-tuning. We show the effectiveness of our approach on a pre-trained SwinIR on all four of
our synthetic data setups.

4× Downsampling 8× Downsampling
PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

DifFace [31] 23.32 0.6399 0.4467 43.48 21.05 0.5649 0.5564 87.91
DiffBIR [15] 23.95 0.6185 0.5217 64.33 21.30 0.5356 0.6134 92.02
PG-Diff [30] 23.41 0.6515 0.4235 41.30 20.68 0.5799 0.4992 87.53
DR2 [29] 22.01 0.6168 0.4400 55.78 21.35 0.5962 0.4548 51.58
Our pseudo targets 23.08 0.6407 0.4241 36.45 22.17 0.6185 0.4493 42.00

GFPGAN [26] 24.12 0.6454 0.4385 45.76 21.90 0.5629 0.5013 67.94
VQFR [6] 21.78 0.5372 0.4711 83.84 20.22 0.4919 0.5184 104.12
CodeFormer [33] 24.31 0.6335 0.4007 40.66 22.19 0.5716 0.4420 51.91
CodeFormer + Ours 23.20 0.6138 0.4117 41.74 22.28 0.5848 0.4290 41.72

Table 11. CodeFormer results on data with moderate noise level. We compare our pseudo targets and fine-tuned results with pre-trained
CodeFormer and other baselines. Top rows: diffusion-dependent models at test time. Bottom rows: diffusion-free models at test time.

4× Downsampling 8× Downsampling
PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

DifFace [31] 21.46 0.5731 0.5396 75.78 18.99 0.4800 0.6589 132.81
DiffBIR [15] 21.83 0.5380 0.6262 86.05 19.26 0.4562 0.7076 160.85
PG-Diff [30] 21.82 0.6012 0.4923 64.82 18.31 0.4879 0.5976 152.10
DR2 [29] 20.13 0.5631 0.4818 53.16 19.32 0.5353 0.5082 58.30
Our pseudo targets 23.15 0.6507 0.4364 37.42 21.14 0.5902 0.4918 50.59

GFPGAN [26] 22.89 0.5999 0.4807 56.07 20.27 0.4937 0.5582 97.86
VQFR [6] 20.16 0.4709 0.5318 114.00 18.54 0.4161 0.5950 142.11
CodeFormer [33] 22.90 0.5810 0.4420 53.02 20.60 0.5108 0.4938 72.16
CodeFormer + Ours 22.85 0.6036 0.4258 41.21 21.38 0.5514 0.4589 46.66

Table 12. CodeFormer results on data with severe noise level. We compare our pseudo targets and fine-tuned results with pre-trained
CodeFormer and other baselines. Top rows: diffusion-dependent models at test time. Bottom rows: diffusion-free models at test time.

Noise 4× Downsampling 8× Downsampling
Level PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

moderate 26.79 0.7201 0.3302 32.69 24.65 0.6618 0.3722 37.52
severe 25.78 0.6894 0.3522 34.99 23.75 0.6447 0.3908 40.16

Table 13. SwinIR results using GT images as pseudo targets. We show the results of fine-tuning a pre-trained SwinIR using GT clean
images on all four of our synthetic data setups (supervised fine-tuning).

Noise 4× Downsampling 8× Downsampling
Level PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

moderate 24.53 0.6565 0.3598 36.57 23.38 0.6169 0.3881 39.06
severe 24.02 0.6369 0.3755 37.00 22.73 0.5978 0.4063 40.98

Table 14. CodeFormer results using GT images as pseudo targets. We show the results of fine-tuning a pre-trained CodeFormer using
GT clean images on all four of our synthetic data setups (supervised fine-tuning).

Low Freq.
Constraint

Low Pass
Filter’s N

Timestep
K

Timestep
L

PSNR↑ SSIM↑ LPIPS↓ FID↓

✓ 8 600 360 23.47 0.6564 0.4381 43.01
✓ 16 600 360 22.89 0.6317 0.4444 41.13
✓ 32 600 360 22.05 0.6127 0.4504 40.92
✓ 16 600 0 22.73 0.6114 0.4991 58.10
✓ 16 600 180 22.85 0.6204 0.4786 55.03
✓ 16 900 360 22.59 0.6277 0.4512 43.20
✗ - 600 - 20.53 0.5874 0.4717 43.51
✗ - 360 - 23.04 0.6319 0.4568 51.84
✗ - 180 - 23.52 0.6446 0.4872 71.18

Table 15. Quantitative ablation study on the low pass downsampling factor and timestep choices for SwinIR pseudo targets. We
compare the results of the SwinIR pseudo targets with different timesteps choices (K and L) and low pass filter downsampling parameters
(N) on 4× downsampling data at moderate noise level. Red and blue indicate the best and the second best results. Bold indicates our
selection.

Low Freq.
Constraint

Low Pass
Filter’s N

Timestep
K

Timestep
L

PSNR↑ SSIM↑ LPIPS↓ FID↓

✓ 4 600 360 23.37 0.6694 0.4346 40.85
✓ 8 600 360 23.15 0.6507 0.4364 37.42
✓ 16 600 360 22.59 0.6285 0.4458 37.81
✓ 8 600 0 23.54 0.6409 0.4506 54.58
✓ 8 600 180 23.59 0.6543 0.4368 41.28
✓ 8 900 360 22.40 0.6266 0.4511 38.99
✗ - 600 - 20.11 0.5746 0.4857 41.94
✗ - 360 - 22.65 0.6170 0.4440 37.45
✗ - 180 - 22.83 0.5981 0.4498 47.41

Table 16. Quantitative ablation study on low pass downsampling factor and timestep choices for CodeFormer pseudo targets. We
compare the results of CodeFormer pseudo targets with different timesteps choices (K and L) and low pass filter downsampling parameters
(N) on 4× downsampling data at severe noise level. Red and blue indicate the best and the second best results. Bold indicates our selection.

Low Freq.
Constraint

Low Pass
Filter’s N

Timestep
K

Timestep
L

PSNR↑ SSIM↑ LPIPS↓ FID↓

✓ 8 600 360 25.06 0.6782 0.3803 40.71
✓ 16 600 360 24.75 0.6676 0.3853 41.42
✓ 32 600 360 24.33 0.6580 0.3943 42.56
✓ 16 600 0 24.68 0.6657 0.4183 57.17
✓ 16 600 180 24.70 0.6668 0.4080 54.01
✓ 16 900 360 24.26 0.6567 0.3919 42.54
✗ - 600 - 23.72 0.6422 0.4047 45.40
✗ - 360 - 25.09 0.6763 0.3896 43.72
✗ - 180 - 25.21 0.6832 0.4146 54.63

Table 17. Quantitative ablation study on the low pass downsampling factor and timestep choices for SwinIR finetuning. We compare
the results of the SwinIR pseudo targets with different timesteps choices (K and L) and low pass filter downsampling parameters (N) on
4× downsampling data at moderate noise level. Red and blue indicate the best and the second best results. Bold indicates our selection.

Low Freq.
Constraint

Low Pass
Filter’s N

Timestep
K

Timestep
L

PSNR↑ SSIM↑ LPIPS↓ FID↓

✓ 4 600 360 22.87 0.6055 0.4249 40.71
✓ 8 600 360 22.85 0.6036 0.4258 41.21
✓ 16 600 360 22.66 0.5941 0.4312 42.30
✓ 8 600 0 22.96 0.5927 0.4296 46.73
✓ 8 600 180 22.94 0.6017 0.4256 42.27
✓ 8 900 360 22.88 0.6049 0.4260 41.61
✗ - 600 - 21.45 0.5487 0.4581 48.72
✗ - 360 - 22.64 0.5869 0.4291 42.40
✗ - 180 - 22.81 0.5849 0.4294 46.00

Table 18. Quantitative ablation study on low pass downsampling factor and timestep choices for CodeFormer finetuning. We
compare the results of CodeFormer pseudo targets with different timesteps choices (K and L) and low pass filter downsampling parameters
(N) on 4× downsampling data at severe noise level. Red and blue indicate the best and the second best results. Bold indicates our selection.

Noise 4× Downsampling 8× Downsampling
Level PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

without moderate 22.96 0.6316 0.4499 42.44 21.39 0.5808 0.5406 70.88
with moderate 23.08 0.6407 0.4241 36.45 22.17 0.6185 0.4493 42.00

without severe 21.75 0.5941 0.5228 59.71 19.90 0.5323 0.6188 98.49
with severe 23.15 0.6507 0.4364 37.42 21.14 0.5902 0.4918 50.59

Table 19. Pseudo targets with vs. without running a pre-trained CodeFormer. We compare the pseudo targets generated with and
without running a pre-trained CodeFormer before the pseudo target generation process.

Noise 4× Downsampling 8× Downsampling
Level PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

without moderate 23.10 0.6033 0.4170 41.23 21.87 0.5442 0.4556 52.62
with moderate 23.20 0.6138 0.4117 41.74 22.28 0.5848 0.4290 41.72

without severe 22.27 0.5629 0.4505 46.32 20.63 0.4749 0.5041 72.73
with severe 22.85 0.6036 0.4258 41.21 21.38 0.5514 0.4589 46.66

Table 20. CodeFormer fine-tuning results using pseudo targets with vs. without running a pre-trained CodeFormer. We compare
the results of fine-tuning using pseudo targets generated with and without running a pre-trained CodeFormer before the pseudo target
generation process.

PSNR↑ SSIM↑ LPIPS↓ FID↓ Deg.↓ LMD↓
DifFace [31] 20.23 0.5266 0.5993 104.30 60.30 4.88
DiffBIR [15] 20.55 0.4971 0.6669 123.45 52.15 4.80
PG-Diff [30] 20.07 0.5445 0.5450 108.46 57.95 4.87
DR2 [29] 19.73 0.5492 0.4950 55.73 67.01 6.37
Our pseudo targets 21.87 0.6094 0.4688 44.20 57.38 4.35

GFPGAN [26] 19.35 0.4435 0.5634 128.06 52.48 4.37
VQFR [6] 21.58 0.5468 0.5195 76.97 51.28 4.14
CodeFormer [33] 21.75 0.5459 0.4679 62.59 49.48 3.83
CodeFormer + Ours 22.12 0.5775 0.4424 43.94 53.88 4.11

Table 21. CodeFormer results of facial recognition based metrics on data with severe noise level. We compare our pseudo targets and
fine-tuned results with pre-trained CodeFormer and other baselines on metrics including Deg. [26] and LMD [6]. Top rows: diffusion-
dependent models at test time. Bottom rows: diffusion-free models at test time.

4× Downsampling 8× Downsampling
PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

Pre-trained 25.32 0.6909 0.4173 46.34 23.12 0.6341 0.4752 66.43
Fine-tuned 25.37 0.6872 0.3658 39.03 23.75 0.6412 0.4063 48.87

Table 22. SwinIR’s results on data with mild degradations. We show the effectiveness of our approach on a pre-trained SwinIR on
inputs with mild degradations.

Number of Parameters ↓ Inference Time ↓
DifFace [31] 159.59M 4.0053s
DiffBIR [15] 1666.75M 9.1807s
PG-Diff [30] 159.59M 15.9534s
DR2 [29] 93.56M 1.0812s

GFPGAN [26] 76.21M 0.0249s
VQFR [6] 76.56M 0.1392s
One step of diffusion model [8] 159.59M 0.0402s
SwinIR [14] + Ours 15.79M 0.0311s
CodeFormer [33] + Ours 94.11M 0.0274s

Table 23. Memory and inference time comparison. We compare the memory and inference time of the baseline methods with the model
architectures we used in our pipeline. Note that the one step of the diffusion model refers to the time it performs one denoising step.

Algorithm 1 Generating pseudo targets (ours)

Input: low-quality restoration output y0 = R(y), low-
pass filter ϕN , pre-defined timesteps L and K where L <
K < T
Output: pseudo target x̄0 for low-quality input y
x̄K ← sample from N (yK ;

√
ᾱKy0, (1− ᾱK)I)

for t from K to 1 do
x̄t−1 ← sample from pθ(x̄t−1|x̄t) ▷ unconditional

denoising
if t > L then

yt−1 ← sample from N (yt−1;
√
ᾱt−1y0, (1 −

ᾱt−1)I)
x̄t−1 ← x̄t−1 − ϕN (x̄t−1) + ϕN (yt−1) ▷ low

frequency content constraint
end if

end for
return x̄0

Algorithm 2 DifFace [31]

Input: output of a pre-trained restoration model y0 =
R(y), a pre-defined timestep K where K < T
Output: clean image x0 for low-quality input y
xK ← sample from N (yK ;

√
ᾱKy0, (1− ᾱK)I)

for t from K to 1 do
xt−1 ← sample from pθ(xt−1|xt) ▷ unconditional

denoising
end for
return x0

Algorithm 3 ILVR [1]

Input: low-quality input y, low-pass filter ϕN

Output: clean image x0 for low-quality input y
xT ← sample from N (0; I)
for t from T to 1 do

xt−1 ← sample from pθ(xt−1|xt) ▷ unconditional
denoising

yt−1 ← sample fromN (yt−1;
√
ᾱt−1y, (1−ᾱt−1)I)

xt−1 ← xt−1 − ϕN (xt−1) + ϕN (yt−1)
end for
return x0

Algorithm 4 DDA [4]

Input: low-quality input y, low-pass filter ϕN , a pre-
defined timestep K where K < T , diffusion model’s
noise prediction network ϵθ, guidance weight s
Output: clean image x0 for low-quality input y
xK ← sample from N (yK ;

√
ᾱKy, (1− ᾱK)I)

for t from K to 1 do
x̂t−1 ← sample frompθ(xt−1|xt) ▷ unconditional

denoising
x̂0 ← (xt −

√
1− ᾱtϵθ(xt, t))/

√
ᾱt ▷ Estimate x0

from xt directly
xt−1 ← x̂t−1 − s∇xt

||ϕN (y)− ϕN (x̂0)||2 ▷
gradient guidance
end for
return x0

Algorithm 5 PG-Diff [30]

Input: output of a pre-trained restoration model y0 =
R(y), pre-defined timesteps τ and K where τ < K <
T , unconditional denoising pθ(x̂t−1|x̂t) = N (µθ,Σθ),
diffusion model’s noise prediction network ϵθ, guidance
weight s, number of gradient steps G
Output: clean image x0 for low-quality input y
xT ← sample from N (0; I)
for t from T to 1 do

µ,Σ← µθ(xt, t),Σθ(xt, t)
x̂0 ← (xt −

√
1− ᾱtϵθ(xt, t))/

√
ᾱt ▷ Estimate x0

from xt directly
if τ ≤ t ≤ K then ▷ multiple guidance steps

repeat
xt ← sample from N (µ − s∇x̂0

||y0 −
x̂0||22,Σ)

x̂0 ← (xt −
√
1− ᾱtϵθ(xt, t))/

√
ᾱt

until G− 1 times
end if
xt−1 ← sample from N (µ− s∇x̂0 ||y0 − x̂0||22,Σ) ▷

gradient guidance
end for
return x0

Algorithm 6 DiffBIR [15]

Input: output of a pre-trained restoration model y0 =
R(y), unconditional denoising of a latent diffusion
model pθ(ẑt−1|ẑt) = N (µθ,Σθ), a fine-tuned latent
diffusion model’s noise prediction network ϵθ with text
prompt set to empty, latent diffusion model’s encoder E
and decoder D, guidance weight s
Output: clean image x0 for low-quality input y
zy0
← E(y0)

zT ← sample from N (0; I)
for t from T to 1 do

µ,Σ← µθ(xt, t),Σθ(xt, t)
ẑ0 ← (zt −

√
1− ᾱtϵθ(zt, t))/

√
ᾱt ▷ Estimate z0

from zt directly
zt−1 ← sample from N (µ− s∇x̂0

||zy0
− ẑ0||22,Σ) ▷

gradient guidance
end for
x0 ← D(z0)
return x0

Algorithm 7 DR2 [29]

Input: low-quality input y, low-pass filter ϕN , a pre-
trained face restoration model f for post-processing, pre-
defined timesteps τ and K where τ < K < T , diffusion
model’s noise prediction network ϵθ, downsampling fac-
tor r = 2
Output: clean image x0 for low-quality input y
y0 ← (y)↓r

▷ Downsampling by a factor of r
x̂K ← sample from N (yK ;

√
ᾱKy0, (1− ᾱK)I)

for t from K to (τ + 1) do
x̂t−1 ← sample from pθ(x̂t−1|x̂t) ▷ unconditional

denoising
yt−1 ← sample from N (yt−1;

√
ᾱt−1y0, (1 −

ᾱt−1)I)
x̂t−1 ← x̂t−1 − ϕN (x̂t−1) + ϕN (yt−1) ▷ low

frequency content constraint
end for
x̂0 ← (xτ −

√
1− ᾱτϵθ(xτ , τ))/

√
ᾱτ ▷ Estimate x0

from xτ directly
x̂0 ← (x̂0)↑r

x0 ← f(x̂0) ▷ Run post-processing restoration model
return x0

Input GFPGAN VQFR DR2 PG-Diff CodeFormer
CodeFormer

+ Ours

Figure 6. Qualitative comparison on testing samples from our Wider-Test-200 (zoom in for details).

SwinIR CodeFormer

4 ×

Input Pre-trained
Fine-tuned

(Ours)
GT

8 ×

Pre-trained
Fine-tuned

(Ours)

M
o
d
e
ra
te

S
e
v
e
re

S
e
v
e
re

M
o
d
e
ra
te

Figure 7. Additional qualitative comparison between pre-trained and fine-tuned models at different degradation levels (zoom in for details).

Input GFPGAN VQFR PG-Diff CodeFormer
CodeFormer

+ Ours
GTDR2

M
o
d
e
ra
te

S
e
v
e
re

M
o
d
e
ra
te

S
e
v
e
re

4 ×

8 ×

Figure 8. Additional qualitative comparison with other baselines at different degradation levels (zoom in for details).

Figure 9. Fine-tuned SwinIR’s performance when using different sizes of fine-tuning datasets on 4× downsampling data at moderate noise
level.

References
[1] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune

Gwon, and Sungroh Yoon. Ilvr: Conditioning method for
denoising diffusion probabilistic models. In ICCV, 2021. 4,
13

[2] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. In NeurIPS, 2021. 2, 4

[3] Alessandro Foi, Mejdi Trimeche, Vladimir Katkovnik, and
Karen Egiazarian. Practical poissonian-gaussian noise mod-
eling and fitting for single-image raw-data. In TIP, 2008.
1

[4] Jin Gao, Jialing Zhang, Xihui Liu, Trevor Darrell, Evan Shel-
hamer, and Dequan Wang. Back to the source: Diffusion-
driven adaptation to test-time corruption. In CVPR, 2023. 4,
13

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial networks. In
NeurIPS, 2014. 1

[6] Yuchao Gu et al. Vqfr: Blind face restoration with vector-
quantized dictionary and parallel decoder. In ECCV, 2022.
4, 9, 12

[7] Yuchao Gu, Xintao Wang, Liangbin Xie, Chao Dong, Gen
Li, Ying Shan, and Ming-Ming Cheng. Vqfr: Blind face
restoration with vector-quantized dictionary and parallel de-
coder. In ECCV, 2022. 3

[8] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In NeurIPS, 2020. 12

[9] Marco Huber, Anh Thi Luu, Fadi Boutros, Arjan Kuijper,
and Naser Damer. Bias and diversity in synthetic-based face
recognition. In WACV, 2024. 8

[10] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. arXiv, 2017. 1, 7

[11] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, 2019. 1, 2, 6, 7

[12] Xiaoming Li, Chaofeng Chen, Shangchen Zhou, Xianhui
Lin, Wangmeng Zuo, and Lei Zhang. Blind face restora-
tion via deep multi-scale component dictionaries. In ECCV,
2020. 1

[13] Xiaoming Li, Ming Liu, Yuting Ye, Wangmeng Zuo, Liang
Lin, and Ruigang Yang. Learning warped guidance for blind
face restoration. In ECCV, 2018. 1

[14] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration us-
ing swin transformer. In ICCV, 2021. 1, 4, 6, 7, 12

[15] Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Ben Fei,
Bo Dai, Wanli Ouyang, Yu Qiao, and Chao Dong. Diffbir:
Towards blind image restoration with generative diffusion
prior. arXiv, 2023. 4, 6, 8, 9, 12, 14

[16] Xinhao Liu, Masayuki Tanaka, and Masatoshi Okutomi.
Practical signal-dependent noise parameter estimation from
a single noisy image. In TIP, 2014. 1

[17] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In ICCV, 2015.
8

[18] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. arXiv, 2016. 1

[19] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019. 1

[20] Markku Makitalo and Alessandro Foi. Optimal inversion
of the generalized anscombe transformation for poisson-
gaussian noise. In TIP, 2012. 1

[21] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik
Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans.
On distillation of guided diffusion models. In CVPR, 2023.
3

[22] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In ICML, 2021. 2

[23] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 4

[24] Donghwan Seo, Abhijith Punnappurath, Luxi Zhao, Abdel-
rahman Abdelhamed, Sai Kiran Tedla, Sanguk Park, Jihwan
Choe, and Michael S Brown. Graphics2raw: Mapping com-
puter graphics images to sensor raw images. In ICCV, 2023.
1

[25] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya
Sutskever. Consistency models. In ICML, 2023. 3

[26] Xintao Wang et al. Towards real-world blind face restoration
with generative facial prior. In CVPR, 2021. 1, 9, 12

[27] Xintao Wang, Yu Li, Honglun Zhang, and Ying Shan. To-
wards real-world blind face restoration with generative facial
prior. In CVPR, 2021. 3

[28] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan.
Real-esrgan: Training real-world blind super-resolution with
pure synthetic data. In ICCVW, 2021. 4

[29] Zhixin Wang, Ziying Zhang, Xiaoyun Zhang, Huangjie
Zheng, Mingyuan Zhou, Ya Zhang, and Yanfeng Wang. Dr2:
Diffusion-based robust degradation remover for blind face
restoration. In CVPR, 2023. 4, 6, 9, 12, 14

[30] Peiqing Yang, Shangchen Zhou, Qingyi Tao, and
Chen Change Loy. Pgdiff: Guiding diffusion models
for versatile face restoration via partial guidance. In
NeurIPS, 2023. 4, 9, 12, 13

[31] Zongsheng Yue and Chen Change Loy. Difface: Blind face
restoration with diffused error contraction. arXiv, 2022. 2,
4, 6, 8, 9, 12, 13

[32] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 1

[33] Shangchen Zhou, Kelvin C.K. Chan, Chongyi Li, and
Chen Change Loy. Towards robust blind face restoration
with codebook lookup transformer. In NeurIPS, 2022. 1,
2, 4, 5, 9, 12

	. Summary
	. Details on Synthetic Datasets
	. Pre-training Dataset
	. Our Synthetic Dataset

	. Implementation Details
	. Pre-trained Models
	. Fine-tuning

	. Additional Results
	. Qualitative Results
	. Quantitative Results
	Mild degradations
	Comparison on face recognition metrics
	Runtime and memory efficiency

	. Additional Ablation Studies
	Effects of timesteps and low pass filter choices
	Loss functions setup for fine-tuning
	Weights of the loss functions
	Number of images used in fine-tuning

	. More Analysis and Discussions
	. Pseudo Target Generation vs. Other Diffusion-based Methods
	. CodeFormer Fidelity Weight
	. Pseudo Target Generation Without Pre-trained Restoration Model
	. Pseudo Targets Fidelity - Quality Trade-off
	. Improved DifFace and DiffBIR

	. Limitations
	. Potential Negative Impact

