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In the supplementary material, we present an expanded
set of results and analyses to better understand of our work.
Appendix A provides details of our eye-tracking setup,
methodology, and apparatus. Appendix B examines the per-
formance of our model on image memorability tasks and
impact of transfer learning. Appendix C presents additional
experiments and results: (i) model ablation results and
comparison to state-of-the-art on VideoMem [12]; (ii) de-
tailed qualitative analysis on both Memento10K [33] and
VideoMem datasets including human gaze and model atten-
tion maps; (iii) additional similarity metrics and assessment
of the impact of video complexity; and (iv) results compar-
ing human gaze vs. model attention on the FIGRIM [8] im-
age memorability dataset. Appendix D explains the integra-
tion of text captions into our model, and the corresponding
results. Finally, Appendix E discusses the results of apply-
ing panoptic segmentation to better understand the semantic
concepts in the scene.

A. Eye-tracking Setup

A.1. Experiment Setup Details

The eye-tracking experiment is structured in the form of
a continuous recognition experiment, where we present par-
ticipants with a series of videos and instruct them to press
the SPACEBAR when they recognize a video as being a repeat
of one they had seen earlier in the sequence. As feedback
for participants, we change the background color of the dis-
play to GREEN in case of a true positive and RED in case of a
false positive.

We recruit 20 participants to watch 200 videos each from
the Memento10K and VideoMem datasets, each participant
watching videos exclusively from one dataset.

We select participants based on a strict criterion relating
to their visual acuity, only considering individuals with a re-
fractive error (eyeglass power) within the range of [−1,+1]
diopters. We establish this criterion in order to maintain a
standard level of natural visual acuity among participants.
Additionally, we require all participants to view the videos
without the aid of eyeglasses, ensuring that any corrective

Figure 8. Participant watching videos from Memento10K during
the eye-tracking experiment (face anonymized).

lenses did not affect the pupil tracking device.
For the participants watching videos from Memento10K

we display videos in their original size and aspect ratio on a
screen of size 1024×768. For participants watching videos
from VideoMem, we display videos in their original aspect
ratio, resized to fit the screen width. For example, we con-
vert videos with size 1920×1080 to 1024×576, maintaining
the aspect ratio of 1.77.

We calibrate and validate pupil positions after every 20
videos for Memento10K and 10 videos for VideoMem (ap-
proximately 1 minute). Participants use a mounted chin-rest
while viewing videos, placed at a distance of 35 cm from the
screen.

The primary interest is in capturing the participants’ fix-
ations while engaged in a memory game similar to the orig-
inal studies of Memento10K and VideoMem.

The eye-tracking study involving human participants
was reviewed and approved by the Institute Review Board
(IRB). The participants provided their written informed
consent to participate in the study.

A.2. Eye-tracking Procedure

The main procedure of the experiment (sequence in
which videos are shown) is presented in Fig. 9. An instance
of a participant watching the videos can be seen in Fig. 8.

Video selection. We select 200 videos each from the vali-
dation sets consisting of 1500 videos in Memento10K and
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Figure 9. Design of eye-tracking experiment. A subject watches alternating videos and drift correction fixation crosses (typically between
0.5 s to 1 s). A vigilance video (one of 40) is repeated in a short interval of 2-3 videos to ensure that the subject is alert, while the target
videos (one of 20) have a lag of at least 9 videos. Filler videos (80) are not repeated.

1000 in VideoMem. To ensure a representative and varied
selection of videos, we use a two-step process:

1. Clustering: We initially cluster videos based on
their visual features. We extract the average CLIP
ResNet [36] embeddings from selected frames of each
video — T=5 linearly spaced frames for videos from
the Memento dataset and T=7 linearly spaced frames
from Videomem. We then group these videos into
28 distinct clusters using K-Means Clustering, provid-
ing a structured framework for subsequent selection.
We choose K=28 by visually inspecting the quality
of clusters (generated from hierarchical clustering) for
values around 30.

2. Binning: Following clustering, we bin videos based
on their ground truth memorability scores, creating 10
distinct bins. This stratification allows for a balanced
representation of memorability levels within the se-
lected videos.

We select videos for the experiment through the fol-
lowing sampling strategy: Initially, we sample one video
from each cluster-bin combination, ensuring broad cover-
age across all memorability levels and visual characteris-
tics. In instances where the initial sampling does not yield
200 videos, we sample for a second iteration. This round in-
volves selecting an additional video from some cluster-bin
combinations, again governed by the availability of videos
within each category. To adhere to the desired total of 200
videos, we uniformly remove any excess videos from the
sampled pool. We randomly select and remove these excess
videos from the cluster-bin combinations, ensuring an even
distribution across all categories.

From these selected 200 videos, the experiment design
requires a refined set of 140 unique videos (20 target re-
peats, 40 vigilance repeats, and 80 fillers). We, therefore,
randomly select videos for each category (vigilance, tar-
get, and regular) from the pool of 200 videos, ensuring that
each category had a distinct set of videos. The target and

vigilance repeats are the same across all participants. For
each experimental run, we use a unique order of video pre-
sentations. This involves mixing regular videos with the
vigilance and target videos and then randomly shuffling
this combined set. We constrain the placement of repeated
vigilance videos to a lag of 2− 3 videos, while for target
videos, we maintain a minimum lag of 9 videos (similar to
VideoMem and Memento10k).

A.3. Details of Gaussian blur

To account for the visual field of a participant, we apply
a Gaussian blur to fixation maps obtained from the exper-
iment. The standard deviation (σ ) of the Gaussian blur is
calculated using the formula:

σ =
Pixels Per Degree

2.355
. (4)

Here, 2.355 is a constant derived from the assumption that
the visual angle corresponds to the Full Width at Half Max-
imum (FWHM). The Pixels Per Degree (PPD) is computed
as follows:

PPD =
2×d × tan( θ

2 )

h× y
, (5)

where, d is the distance of the participant to the screen
(13.77 inch or 35 cm), θ is the visual angle (assumed to be
1°), h is the height of the screen (23.5 inch), and y is the
vertical resolution of the screen (768 pixels in our case).

A.4. Metric: AUC-Percentile

For a video Vk and video frame fik, the true frame
similarity score is computed using AUC-Judd between the
model’s attention map αik and the corresponding gaze fixa-
tion density map Gik. Then, for each video, we compute a
true video similarity score by averaging the true frame sim-
ilarity scores.

We perform a permutation test by comparing the atten-
tion map αik of frame fik against the fixation map Gil from
frame fil of a randomly chosen different video Vl , l ̸= k.



This process is repeated 100 times, yielding a distri-
bution of 100 video-level similarity AUC-Judd scores un-
der the null hypothesis of no specific relationship between
model attention and human fixations.

We denote AUC-Percentile for each video as the per-
centile of the true video similarity score within the distribu-
tion of permuted AUC-Judd scores. A high AUC-Percentile
indicates a strong alignment between the model’s attention
map and the human gaze fixation density map for the same
video, relative to a null distribution of comparisons between
different videos. For example, an AUC-Percentile of 80 im-
plies that there is a less than 20% chance that the observed
alignment between the model’s attention map and the hu-
man gaze fixation density map could be attributed to chance
or general center-bias in the data.

B. Transferring from/to Image Memorability
To ascertain the reliability of our simple approach, we

evaluate on image memorability tasks by considering the
image as a “video” of T=1. As seen in Tab. 4, on
the LaMem dataset [25] we match SoTA results (0.720
RC [41]). On the FIGRIM dataset [8], we achieve re-
sults close to human performance (0.74 RC [8]). Previ-
ous studies [33] pretrain models on image memorability
datasets and then fine-tune them for video memorability
prediction. Tab. 4 R2 vs. R4 shows a small improvement
in Memento10k RC score from 0.706 to 0.718 with LaMem
pretraining. However other results do not improve. We also
observe that training on one dataset and evaluating on an-
other (rows 1-3) usually leads to significant degradation and
is an important problem for future work.

C. Additional Results and Qualitative Analysis
In this section, we present the results for video memo-

rability prediction on the VideoMem dataset, followed by
a qualitative analysis of the model’s performance. Finally,
we explore the alignment between human gaze and model
attention through various analyses on both video and image
memorability datasets.

C.1. Video Memorability prediction for Videomem

Expanding on the model ablations for Memento10k in
Sec. 4.1 (of the main paper), Tab. 5 shows results for
VideoMem, which generally follows similar trends, with
Row 1 (R1) achieving the best results. However, random
sampling during training does not improve performance and
including or predicting captions has no impact, perhaps due
to the noise in the captions.

SoTA comparisons are shown in Tab. 6. As the test set
memorability scores (labels) for VideoMem are not avail-
able, no previous work apart from the creators of the dataset
have evaluated on a held-out test set. Instead, all approaches

likely overfit on the validation set with RC scores much
higher than the human-human consistency RC at 0.481. Our
scores are lower than other SoTA methods, likely due to the
challenges discussed in Sec. 4.2. However, we suspect that
other models that leverage multiple modalities are strongly
overfitting on this dataset.

C.2. Qualitative Analysis

We provide a qualitative analysis of the model’s predic-
tions and the alignment of its attention maps with human
gaze, highlighting the model’s successes and failures.

Best, worst, over, and under predictions. A few qualita-
tive examples of different predictions of our model across
both datasets can be seen in Fig. 10. The model seems to
perform well on videos with a clear subject (face, a man
playing with their dog, etc.). Worst predictions (over and
under) are observed on underexposed (dark) videos. The
model tends to over-predict on certain videos with clutter,
while under-predict on scenic videos.

Visualizing gaze and attention maps. The human gaze
fixation maps and model attention maps across multiple
videos can be seen in Fig. 13 for Memento10k and Fig. 14
for VideoMem. In both cases, model attention maps appear
to be more similar to human gaze maps in higher memo-
rability (GT) videos compared to lower memorability ones.
Note, in Sec. 4.3, we rule out the possibility that this align-
ment between model attention and human gaze is driven by
center-bias.

C.3. Additional Results Comparing Human Gaze
vs. Model Attention (Video Memorability)

We expand on the evaluation of human gaze and model
attention alignment using additional metrics and explore
how video complexity affects this alignment.

Additional similarity metrics. To compare human gaze
fixation maps to the model’s attention maps, we use stan-
dard metrics used in saliency evaluation such as AUC-Judd,
NSS, CC, KLD. Additionally, we develop and apply a novel
shuffle-based metric, the AUC-Percentile.

While Fig. 5 from the main paper shows results only
on AUC-Judd and NSS due to space restrictions, we now
extend this to all metrics in Fig. 11. We observe a com-
mon trend of greater match between human gaze and model
attention maps with increasing memorability scores across
most metrics, indicating that memorable videos attract both
human and model attention to the same regions of the video
frames.

Impact of video complexity on gaze/attention alignment
We split the videos in each dataset at the median of the av-
erage number of objects per frame to get one group of sim-
pler and one group of more complex videos. We computed
model attention-human gaze (M-H) and human-human (H-



Table 4. Results of transferring an image/video memorability model to images/videos. Datasets: LM: LaMem [25], M10k: Me-
mento10k [33], VM: VideoMem [12], and FG: FIGRIM [8]. Training strategy: P for pretraining and F for fine-tuning. Results reported on
validation set.

Train on LaMem Memento10k VideoMem FIGRIM

LM M10k VM FG RC MSE RC MSE RC MSE RC MSE

1 F - - - 0.729 0.0074 0.526 0.0220 0.382 0.0233 0.647 0.0168
2 - F - - 0.547 0.0273 0.706 0.0061 0.439 0.0165 0.351 0.0525
3 - - F - 0.549 0.0147 0.525 0.0089 0.513 0.0060 0.501 0.0355

4 P F - - 0.679 0.0161 0.718 0.0568 0.446 0.0144 0.634 0.0318
5 P - F - 0.688 0.0090 0.459 0.0096 0.504 0.0059 0.627 0.0237
6 P - - F 0.678 0.0113 0.507 0.0130 0.392 0.0191 0.742 0.0123
7 P F F - 0.664 0.0135 0.689 0.0058 0.483 0.0062 0.626 0.0273
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Figure 10. Qualitative analysis of different predictions of our model over Memento10K (Left) and VideoMem (Right). Ground-truth (GT)
and predicted (PR) memorability scores are annotated at the bottom and top of each frame, representative of the videos. Best viewed on
screen by zooming in.

H) gaze alignment scores for these groups of videos. The
alignment metrics are presented in Tab. 7 and indicate that
in both datasets, humans gaze patterns tend to agree with
those of other humans as well as model attention patterns
with no statistically significant differences between simple
and complex videos except in the M-H NSS metric for Me-
mento10k. Therefore, the results presented in the main pa-
per are unlikely to be explained by complexity of the videos.

C.4. Human Gaze vs. Model Attention (Image Mem-
orability)

Next, to establish the general trend of similarity between
model attention and human gaze with increasing memo-
rability, we also present results on the FIGRIM dataset,

which provides gaze data along with memorability scores
for images. While Appendix B provides quantitative re-
sults on memorability prediction, Fig. 12 illustrates a sim-
ilar trend of increasing human gaze and model attention
agreement with increasing memorability scores on the FI-
GRIM dataset.

D. Modeling with Captions

Building upon Sec. 3.1 where we presented the vision-
only model, we now explain how captions can be easily
integrated into the existing modeling framework. We con-
sider two paradigms. In the first, the caption is assumed
available, both during training and inference. This may be



Embedding Memento10k (val) VideoMem (val)

CLIP Time Space Sampling Caption RC ↑ MSE ↓ RC ↑ MSE ↓
1 Spatio-Temporal Fourier - Random - 0.706 0.0061 0.513 0.0060

2 Temporal Fourier - Random - 0.687 0.0062 0.508 0.0064
3 Spatio-Temporal Learnable - Random - 0.696 0.0059 0.502 0.0060
4 Spatio-Temporal Fourier 1D Random - 0.703 0.0057 0.506 0.0059
5 Spatio-Temporal Fourier 2D Random - 0.701 0.0056 0.505 0.0060
6 Spatio-Temporal Fourier - Middle - 0.703 0.0066 0.515 0.0059

7 Spatio-Temporal Fourier - Random Original 0.745 0.0050 0.505 0.0061
8 Spatio-Temporal Fourier - Random Predicted 0.710 0.0056 0.508 0.0061

Table 5. Model ablations. Column 1 (C1) compares the impact of using spatio-temporal features versus temporal features with global
average pooling. C2 and C3 specify the types of temporal and spatial position embedding used. C4 is the frame sampling method used
during training. C5 indicates whether the video caption is used in modeling. Row 1 (R1) is chosen as the default configuration for further
experiments and represents the best vision-only model. R2-6 evaluate varying visual choices: features, position-encoding, and frame
sampling methods. R7 presents results with original captions as a part of the model and R8 aims to predict the captions on the fly. The best
results in each section are in bold, with second-best in italics.

Memento10k (test) VideoMem (test) Memento10k (val) VideoMem (val)

Methods Caption RC MSE RC MSE RC MSE RC MSE

VideoMem ICCV19 No - - 0.494 - - - 0.503 -
SemanticMemNet ECCV20 No 0.659 - - - - - 0.555 -
M3-S CVPR23 No - - - - 0.670 0.0062 0.563 0.0046
Ours (R1 Tab. 5) No 0.662 0.0065 - - 0.706 0.0061 0.513 0.0060

SemanticMemNet Yes 0.663 - - - - - 0.556 -
Sharingan arXiv Yes - - - - 0.72 - 0.6 -
Ours (R7 Tab. 5) Yes 0.713 0.0050 - - 0.745 0.0050 0.505 0.0061

Table 6. Comparison against SoTA for video memorability on both test and validation sets for Memento10k and VideoMem. Baselines
considered are VideoMem [12], SemanticMemNet [33], M3-S [16], and Sharingan [20]. Human-human split-half consistency scores are
0.73 for Memento10k and 0.481 for VideoMem.

achieved using recent advances in vision-language models
(VLMs). In the second, we consider experiments where the
caption is predicted simultaneously with the estimation of
the video memorability score (similar to [33]).

D.1. Assuming Caption is Available

When the caption is given, we first extract token-level
representations through a BERT encoder and append them
to the spatio-temporal video tokens for memorability pre-
diction.
Text encoder. We extract textual embeddings for the cap-
tions from the last hidden state of the BERT [14] model ψ:

{gl}N
l=1 = ψ({gl}N

l=1) , (6)

where gl ∈ Rd , N is the number of tokens, and d is the di-
mensionality of the embeddings, equal to the reduced di-
mensionality of images after the linear layer.
Changes to the video encoder. We append N text tokens
to the T HW visual tokens fed to the Transformer encoder.
To distinguish between text and image, we append modality

specific embeddings to both the visual (from Eq. 2) and text
tokens. We also add position embeddings indicating order
to the text tokens.

f′i j = Wdfi j +Et
i +Es

j +Em
1 , (7)

g′l = gl +Ec
l +Em

2 , (8)

where i = [1, . . . ,T ], j = [1, . . . ,HW ], l = [1, . . . ,N], Et
i is

the ith row of the temporal embedding matrix (learnable or
Fourier) for images, Ec

l is the lth row of the temporal embed-
ding matrix for the caption, Es

j is the jth row of the spatial
embedding matrix, and Em

[1,2] are the modality embeddings,
one for visual tokens, another for text.

We combine the CLS token (with learnable parameters
hCLS), image and text tokens to create a sequence of 1+
TWH +N, apply LayerNorm, feed it to the TE.

[h̃CLS, f̃11, . . . , f̃T HW , g̃1, . . . , g̃N ] =

TE([hCLS, f′11, . . . , f
′
T HW ,g′1, . . . ,g

′
N ]) . (9)

As before, h̃CLS is used to predict the memorability score.
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Figure 11. Top: Memento10K, Bottom: VideoMem. Performance across different similarity/distance metrics while comparing the human
gaze fixation maps with model attention maps. The metrics are indicated with arrows to indicate whether higher or lower scores are better:
AUC (Judd) ↑; NSS ↑; CC ↑; KLD ↓; and AUC Percentile (ours) ↑. Results are presented for n=139 videos, binned into 4 percentiles
based on ground-truth memorability scores.

Memento10K VideoMem

Metrics M-H H-H M-H H-H

Simple Complex t Simple Complex t Simple Complex t Simple Complex t

AUC-J ↑ 0.89 ±0.01 0.88 ±0.01 0.60 0.90 ±0.01 0.89 ±0.01 0.17 0.89 ±0.01 0.89 ±0.01 −0.19 0.83 ±0.01 0.80 ±0.01 1.53

AUC-P ↑ 84.41 ±2.18 81.10 ±2.48 0.99 - - - 89.45 ±1.92 88.37 ±1.72 0.41 - - -
NSS ↑ 1.89 ±0.09 1.60 ±0.07 2.1 3.02 ±0.17 3.07 ±0.17 −0.20 2.08 ±0.14 1.94 ±0.11 1.05 3.85 ±0.46 3.79 ±0.40 0.11

CC ↑ 0.58 ±0.02 0.52 ±0.02 1.66 0.48 ±0.02 0.49 ±0.02 −0.26 0.29 ±0.02 0.26 ±0.01 1.46 0.28 ±0.02 0.28 ±0.01 0.14

KLD ↓ 1.08 ±0.02 1.16 ±0.02 −1.41 2.19 ±0.11 2.16 ±0.11 0.23 2.64 ±0.05 2.67 ±0.04 −0.64 4.01 ±0.13 4.16 ±0.10 −0.89

Table 7. Comparing gaze fixation maps against model’s attention map via different metrics for simple and complex videos, along with
human-human alignment scores(split by half, averaged over 10 random iterations) for Memento10K and Videomem datasets. ↑ (↓) indicates
higher (lower) is better. M-H: Model-human; H-H: Human-human; and t: t-test significance. Significant t-statistics are shown in bold
(p < 0.05).

We report results when using the ground-truth caption in
this approach in Tab. 1, row 7 of the main paper (w original
captions as input). For Memento10k, we see a 0.04 points
increase in Spearman correlation (0.706 to 0.745), however,
captions do not seem to assist VideoMem.

D.2. Joint Prediction of Caption and Memorability

When the caption is not available, we consider predicting
the caption along with the memorability scores. In particu-
lar, we adapt CLIPCap [32], a recent approach that connects
CLIP visual features with the GPT-2 decoder using a Trans-
former mapping layer.

Specifically, we use a mapping network (a Transformer
decoder) to convert the T HW visual tokens at the output of
the Transformer encoder f̃i j to a set of P prefix tokens. The
mapping network of LD=6 layers consists of P query learn-
able tokens and uses visual inputs as memory, P=30. The
outputs of this mapping network are fed as prefix tokens to
the GPT-2, and captions are generated in an auto-regressive

manner.
We train the model jointly, to predict both the memora-

bility score (using L1 regression loss) and the caption (using
cross-entropy loss). Results of this approach are presented
in Tab. 2, row 3. A small increase of 0.004 is observed
in the RC score (0.706 to 0.710) for Memento10k, while
VideoMem continues to not benefit from captions.

We conclude that generating captions separately with a
VLM and using them (as shown above) may be a better
course of action than training a joint model.

E. Panoptic Segmentation

We present additional experiments and results from the
semantic stuff vs. things analysis obtained through panoptic
segmentation.

Pixel count, human gaze, and model attention across all
labels. In Fig. 15, we show the distributions for all stuff and
things labels. Row 1 is the probability distribution of pixel
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Figure 12. Performance across different similarity/distance metrics while comparing the human gaze fixation maps with model attention
maps for the FIGRIM dataset. The metrics are indicated with arrows to indicate whether higher or lower scores are better: AUC (Judd) ↑;
NSS ↑; CC ↑; and KLD ↓. Results are presented for n=614 images, binned into 4 percentiles based on ground-truth memorability scores.

counts and gaze/attention weighted counts for stuff labels
(plotted in semilog scale). In row 2, we normalize these
counts by the pixel count (blue), highlighting dynamic stuff
labels such as light, food, platform receiving higher atten-
tion weighted scores, while other mundane labels such as
wall, sky, road receiving lower scores.

A similar analysis is shown for things in rows 3 and 4.
Here too, we observe that daily objects such as bed, car,
toilet receive less human and model attention to account for
memorability, while dynamic or interesting objects such as
person, dog, bird, wine glass, banana (among others) re-
ceive higher attention. This confirms that not all objects are
interesting.

Note, while this analysis is also subject to accuracy
of Maskformer [11] (the panoptic segmentation approach),
qualitatively, we find this to be quite reliable as seen in
Fig. 16.
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Figure 13. Comparison of original video frames, gaze fixation maps, and model attention maps on the Memento10K dataset. We also
indicate the ground-truth and predicted memorability scores, and the AUC Judd score measuring similarity between saliency maps.
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Figure 14. Comparison of original video frames, gaze fixation maps, and model attention maps on the VideoMem dataset. We also indicate
the ground-truth and predicted memorability scores, and the AUC Judd score measuring similarity between saliency maps.
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Figure 15. Analysis of panoptic segmentation results. The vertical red line marks the top-20 labels within these categories. First and
Third: Raw, attention-, and gaze-weighted pixel probabilities for stuff and things, respectively (plotted in semilog scale); Second and
Fourth: Highlights how model attention-weighted and human gaze-weighted pixel counts are higher or lower relative to normalized raw
pixel counts for stuff and things.



Figure 16. Visualisation of panoptic segmentation predictions on Memento10k dataset.
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