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6. Discussion

In the realm of anomaly detection based on diffusion
models, a full Markov chain is not necessarily required.
However, when it comes to generating high-quality images,
the full Markov chain becomes an essential component. Our
observations reveal that as the number of diffusion steps
increases, Tsimplex exhibits a decrease in sample qual-
ity, as depicted in Figure 6. A multi-section noise can be
specifically designed to incorporate multi-frequency noise
functions, aiming to improve sampling quality and subse-
quently enhance the SSIM which can be a versatile solu-
tion, offering potential avenues to enhance sample quality
and tackle the asymmetry inherent in noise patterns. The
presence of zig-zag patterns in the results can be attributed
to the stochastic nature of Tsimplex noise as shown in Fig-
ure 11. To mitigate this, we adopted a strategy of multi-
ple sampling and the averaging of reconstructions, result-
ing in a smoother Dice score graph, as illustrated in Figure
7 (DTU-Net V1). It is worth considering the integration
of such strategies into the training of diffusion models in
the future. Furthermore, our DTU-Net model, serving as
the backbone of the diffusion model, is not limited to la-
beled data, unlike existing transformer-based models such
as UViT [3] and DiT [30]. The effectiveness of image-level
guidance indicates that we can develop a powerful anomaly
detection model through guided function gradients. This
strategy can also be employed for pretraining on unlabeled
datasets, which can subsequently be enhanced using spe-
cific desirable functions. The methodology presented here
exhibits robustness when dealing with unannotated data. In
the future, we envision its potential to harness additional
information in 3D images, particularly when coupled with
the developed Tsimplex noise. This expansion into 3D data
could offer exciting prospects for enhancing anomaly detec-
tion and image generation.

Qualitative Results: We also showcase the results of
sampling from Tsimplex and Gaussian noise on the Brain-
MRI and leather (channels = 3) subset of the MVTec AD
dataset, demonstrating excellent healthy reconstructions in
Figure 1, 8.

Objective Function Stability: The self-supervised
anomaly detection algorithm is designed to preserve the
structure of input data by focusing on repairing anomalies
while maintaining overall integrity. In our experiments, var-
ious loss functions were utilized, including L1-norm, L2-
norm, L2 with Lvlb, SSIM loss [49], MS-SSIM loss [50],
and several other combinations, aiming to determine the

most effective approach. We compared these loss functions
with Expected Calibration Error (ECE) [54] to assess un-
certainty quality and segmentation performance. Due to the
algorithm’s stochastic nature, we evaluate uncertainty qual-
ity using the ECE to determine when the model’s predic-
tions are trustworthy. We presented results in Table 5 for
the BrainMRI dataset using the ECE uncertainty measure,
comparing absolute error (ae) and square error (se) anomaly
maps between inputs and predicted outputs. Additionally,
segmentation performances are reported in Table 5. Incor-
porating Lvlb and SSIM loss with the L2 measure notably
reduces uncertainty in the direct difference between input
and output, as shown in Table 5. However, this improve-
ment in uncertainty comes at the expense of reduced seg-
mentation performance. Notably, the L2 with lvlb exhibits
better Dice, IOU, and AUC metrics but is deemed less trust-
worthy.

Figure 8. Qualitative visualization of anomaly segmentation in
complex distributions without the need for annotations by DTU-
Net with Tsimplex noise.

Nature of Tsimplex: Figure 11 showcases the his-
togram of the noise under various conditions within Tsim-
plex noise, including persistence (Figure 9(a)), octave value
(Figure 9(b)), and frequency (µ) or amplitude (Figure
11(c)). We identified parameters where the histogram range
approximately falls between −1 and 1 with a mean around
0. Increasing persistence expands the histogram range, as
illustrated in Figure 9(a), which aligns with the formulation
in Algorithm 1 for Tsimplex. We selected persistence val-
ues between 0.6 and 0.9 for a better histogram range, as
demonstrated in Figure 9(d) with persistence = 0.8. Al-
tering the number of octaves shifts the histogram’s center
away from 0. After experimentation and considering Al-
gorithm 1’s complexity, we chose octave values within the



Table 5. Performance comparison of DTU-Net’s segmentation using various objective functions. Trained without averaging multiple sam-
ple outputs, employing square error for mask prediction. Comparison of ECE metrics in the BrainMRI dataset with DTU-Net, showcasing
ECE uncertainty measures and highlighting absolute error (ae) and square error (se) anomaly maps. Best results in bold. Integrating mul-
tiple objectives improves model reliability and performance.

Loss function Dice IOU AUC Precision Recall ECE(ae) ECE(se)
L1 0.3861 ± 0.2267 0.2657 ± 0.1912 0.6961 ± 0.1222 0.4436 ± 0.2281 0.4192 ± 0.2870 0.0342 0.0705
L2 0.3970 ± 0.2320 0.2757 ± 0.1958 0.6946 ± 0.1225 0.4415 ± 0.2235 0.4454 ± 0.2977 0.3011 0.0900
SSIM 0.3541 ± 0.2259 0.2401 ± 0.1838 0.6717 ± 0.1180 0.4083 ± 0.2175 0.3737 ± 0.2776 0.0435 0.0674
MS-SSIM 0.2239 ± 0.1471 0.1347 ± 0.1049 0.6682 ± 0.1170 0.5827 ± 0.202 0.1549 ± 0.1258 0.0293 0.0722
L2+Lvlb 0.4210 ± 0.2390 0.2977 ± 0.2081 0.7084 ± 0.1247 0.4634 ± 0.2350 0.4621 ± 0.2953 0.0332 0.0711
L2+Lvlb+SSIM 0.2772 ± 0.2080 0.1802 ± 0.1608 0.6810 ± 0.1395 0.5858 ± 0.2127 0.2124 ± 0.1987 0.0164 0.0716
L2+Lvlb+MS-SSIM 0.2648 ± 0.1947 0.1691 ± 0.1477 0.6791 ± 0.1303 0.5891 ± 0.1943 0.1980 ± 0.1804 0.0828 0.0621

range of 6 − 10 to cover a range of values, manage time
costs, and maintain a center closer to 0. Next, we examined
the effect of frequency (µ) on the histogram (Figure 9(c)).
Our analysis revealed that frequencies ranging from 20 to
25 (µ ∈ [0, 5]) produced more symmetric noise. However,
despite this, the histogram ranges remained nearly between
−1 and +1. Consequently, combining noises generated at
different µ values might yield superior results. Figure 9(d)
relies on octave = 10, persistence = 0.8, and frequency
= 128, producing a more favorable histogram across all
samples.

Figure 9. Histogram of noise under various conditions within
Tsimplex noise. (a) Shows the impact of persistence on the his-
togram range; increasing persistence expands the range, in line
with Algorithm 1 for Tsimplex. (b) Demonstrates the effect of
altering the number of octaves on the histogram’s center. (c) Ex-
plores the effect of frequency µ on kurtosis and histogram symme-
try. (d) Displays the combined effects of octave, persistence, and
frequency settings on the histogram, highlighting a more favorable
histogram with specific settings.

7. Implementation details
We employ the hyperparameters detailed in Table 6.

The model is implemented using PyTorch and trained on

a single GPU, specifically the NVIDIA RTX A4000, which
boasts 16GB of GDDR6 VRAM. Additionally, we conduct
an area under the curve (AUC) for further comparison, as
depicted in Figure 10. We train only in healthy images

Table 6. Hyperparameters

Parameter Value
Image Settings
Img size (224, 224)
Batch Size 32
Epochs 3000
Time step 1000
Model Configuration
channels 1 or 3
beta schedule cos
loss-type l2− norm
learning rate 1e-4
patch size 16
embed dim 384
depth 6
num heads 6
mlp ratio 4
num class null or 2
EMA rate 0.9999
Tsimplex Parameters
octave 6
frequency 64
persistence 0.9

with the goal of repairing the anomaly. We compute the
({anomaly − repaired}image)2 followed by binarization
for testing the method on segmentation tasks using a variety
of segmentation measures.

7.1. Simplex Noise generation

Tsimplex is based on simplex as shown in the Algorithm
1. We use OpenSimplex5 for generating simplex noise and
the steps are shown in Algorithm 2 in simplified. It is gen-

5https://github.com/lmas/opensimplex



erated by organizing a grid of pseudo-random gradient vec-
tors in a multi-dimensional space. When evaluating the
noise value at a specific point within this space, the algo-
rithm identifies the closest grid points around that location
and retrieves their associated gradient vectors. By calculat-
ing dot products between these gradients and vectors from
the nearby grid points to the target position, it determines
their contributions to the overall noise value. Applying in-
terpolation techniques to blend these contributions results
in a smoothed, continuous noise value at the given point.
This process is repeated across multiple octaves, varying
frequencies, and amplitudes to create more intricate and de-
tailed patterns. The culmination of these steps yields a co-
herent and natural-looking noise output used extensively in
computer graphics for generating realistic textures, simu-
lating terrain, and other applications requiring organic ran-
domness.

Figure 10. Comparision with the AUC matric on BrainMRI dataset
for CE [29], AnnoGAN [41], AnnoDDPM [53], DDPM [18] with
gaussion noise, and some backbones, including UNet [10], UViT
[3], and prposed DTU-Net with Tsimplex.

8. Nature of Tsimplex noise

8.1. Symmetrity

We’ve noticed a slight decline in sample quality in Tsim-
plex models, especially when exposed to higher levels of
noise (denoted by a further ’t’ value). This decrease is
likely due to the asymmetry present in the Tsimplex noise
function. To investigate this, we conducted a study on the
symmetry of the Tsimplex to assess how its parameters in-
fluence this asymmetry. To measure the symmetry of the
noise, we employed the statistical Kurtosis score [51].

Kurtosis is a statistical metric that quantifies the extent
of outliers or the distribution’s ’tailedness’ in comparison
to a normal distribution. Mathematically, the formula for
sample kurtosis can be expressed as:

Kurtosis =
1

n

n∑
i=1

(
xi − x̄

s

)4

Here, xi represents individual observations, x̄ stands for
the sample mean, s denotes the sample standard deviation,

Algorithm 2 Simplex Noise

Input: Input point P = (x, y, z)
Output: Noise value N(P)
Initialize N(P)← 0
Step 1: Grid Setup
Define a regular grid of points by dividing the space into
a grid of cells: G = {G1,G2, . . . ,Gn}.
Step 2: Grid Positioning
Determine the position of P within the grid by finding
the closest grid points to P.
V = {V1,V2, . . . ,Vn}, where Vi is the position of the
i-th closest grid point to P.
Step 3: Gradient Vectors
Calculate the pseudo-random gradient vector Gi for each
grid point: Gi = (gix, giy, giz).
Step 4: Dot Products
Calculate the dot products between Gi and vectors from
the closest grid points to P: Di = Gi · (P−Vi).
Step 5: Interpolation
Interpolate the dot products using a smooth function to
obtain N(P):
N(P) =

∑n
i=1 F (Di), where F (Di) is the interpolation

function.
Step 6: Octaves
Repeat Steps 1-5 for multiple octaves with different fre-
quencies and amplitudes, accumulating the results in
N(P).
return N(P)

and n is the number of observations. This formula calcu-
lates the fourth standardized moment of the data distribu-
tion. A kurtosis value of 3 indicates a distribution similar
to a normal one (mesokurtic). Values greater than 3 imply
heavier tails or more outliers (leptokurtic), while values less
than 3 suggest lighter tails or fewer outliers (platykurtic).

Figure 11 showcases the Kurtosis score and histogram of
the noise under various conditions within Tsimplex noise,
including persistence (Figure 11a), octave value (Figure
11b), and frequency (µ) or amplitude (Figure 11c). We
identified parameters where the histogram range approxi-
mately falls between −1 and 1 with a mean around 0. In-
creasing persistence expands the histogram range, as illus-
trated in Figure 11a, which aligns with the formulation in
Algorithm 1 for Tsimplex.

We selected persistence values between 0.6 and 0.9 for a
better histogram range, as demonstrated in Figure 11d with
persistence = 0.8. Altering the number of octaves shifts
the histogram’s center away from 0. After experimentation
and considering Algorithm 1’s complexity, we chose octave
values within the range of 6−10 to cover a range of values,
manage time costs, and maintain a center closer to 0, as
depicted in Figure 11d.



Next, we examined the effect of frequency (µ) on kurto-
sis and the histogram (Figure 11c). Our analysis revealed
that frequencies ranging from 20 to 25 produced more sym-
metric noise. However, despite this, the histogram ranges
remained nearly between −1 and +1. Consequently, we
believe that combining noises generated at different µ val-
ues might yield superior results. Figure 11d relies on octave
= 10, persistence = 0.8, and frequency = 128, producing
a more favorable histogram, with kurtosis averaging around
3 across all samples from 0− 100.

(a) Illustrates the impact of persistence on histogram range; increasing per-
sistence expands the range, aligned with Algorithm 1 for Tsimplex.

(b) Demonstrates the effect of altering the number of octaves on the his-
togram’s center.

(c) Explores the effect of frequency µ on kurtosis and histogram symmetry.
µ = 5 means frequency = 25

(d) Displays the combined effects of octave, persistence, and frequency
settings on the histogram, highlighting a more favorable histogram with
specific settings (octave =10, persistence =0.8, frequency =128)

Figure 11. Kurtosis score and histogram of noise under various
conditions within Tsimplex noise.

8.2. Stochasticity

Because of the random patterns in Tsimplex noise, the al-
gorithm behaves stochastically which can also seen in Fig-
ure 11d where the kurtosis score is around 3 but not the
same for some set of parameters. This stochasticity is due
to the random patterns in the Tsimplex shown in Figure 12.

To solve this problem, we explore sampling forward diffu-
sion more than once and averaging the corresponding re-
constructions for better reconstruction.

Figure 12. The visual representation showcases the intricate struc-
ture of Tsimplex noise with parameters set as octave=10, persis-
tence=0.8, and frequency=128, revealing the random patterns in-
herent in the noise.

8.3. Further Noise function

We have endeavored to enhance the sample quality by
introducing two new noise sources: Tsimplex Gauss (Tsg)
and Komal-Tsimplex (KTs) noise. Gaussian noise, known
for its high-quality samples, is integrated into Tsg, which is
formulated as follows:

Tsg(x) = α · GenNoise(S, t) + (1− α) · gauss(x), (6)

Here, α =
(
1− t

χ

)
, with t representing the current diffu-

sion step and χ denoting the total diffusion steps. For KTs
noise, we introduce the multi-frequency (Fi,j) for simplex
noise, where the position of a pixel (i, j), and described by
the following equation:

Fi,j = δ × e−(
(i−n+1

2
)2

2σ2 +
(j−m+1

2
)2

2σ2 ) (7)

In this equation, δ represents the desired average frequency
value, n and m are the dimensions of the grid, and σ
controls the spread of the Gaussian distribution. A larger
value of σ results in a Komal (smoother) distribution. In
Figure 13, we illustrate the impact of diffusion steps on
SSIM (Structural Similarity Index Measure), highlighting
that Komal-Tsimplex yields superior sample outputs com-
pared to other methods. Our experiments indicate that while
Tsipplex possesses section-wise frequency noise, it strug-
gles to rectify anomalies, suggesting the need for future in-
vestigations in this specific direction.



Figure 13. Effect of diffusion steps on SSIM using DTU-Net as
the backbone with a variety of noise functions. Komal-Simplex,
tailored for section-based noise schemes, demonstrates superior
SSIM quality compared to others. Further optimization could en-
hance Dice and AUC scores.

9. Guiding Function

The self-supervised anomaly detection algorithm is de-
signed to preserve the structure of input data by focusing
on repairing anomalies while maintaining overall integrity.
In our experiments, various loss functions were utilized,
including l1-norm, l2-norm, l2 combined with total varia-
tion (TV) loss [8], l2 with lvlb, SSIM loss [49], MS-SSIM
loss [50], and several other combinations, aiming to deter-
mine the most effective approach. We compared these loss
functions with Expected Calibration Error (ECE) to assess
uncertainty quality and segmentation performance. Due to
the algorithm’s stochastic nature, we evaluate uncertainty
quality using the Expected Calibration Error (ECE) to de-
termine when the model’s predictions are trustworthy. ECE
is defined as:

ECE =

N∑
i=1

|Bi|
N
· |acc(Bi)− conf(Bi)|

Here, N represents the total number of bins, and Bi denotes
the i-th bin. The accuracy (acc(Bi)) of a bin signifies the
alignment between model predictions and actual outcomes,
while the confidence (conf(Bi)) indicates the certainty level
associated with those predictions. ECE evaluates the dispar-
ity between predicted confidence and actual accuracy across
multiple bins to gauge the model’s calibration performance.

Table 7. Comparison of ECE metrics in the BrainMRI dataset with
DTU-Net. The table exhibits ECE uncertainty measures, high-
lighting absolute error (ae) and square error (se) anomaly maps
between input and predicted outputs. The best objective function,
denoted in bold, demonstrates lower ECE values, indicating higher
statistical reliability.

Loss function ECE (ae) ECE (se)
L1 0.03425 0.07057
L2 0.30111 0.09001
L2+TV 0.08288 0.06214
L2 + lvlb 0.0332 0.07114
SSIM 0.04359 0.06747
MS-SSIM 0.02932 0.07223
L2+lvlb+SSIM 0.01645 0.07165

We presented results in Table 7 for the BrainMRI dataset
using the ECE uncertainty measure, comparing absolute er-
ror (ae) and square error (se) anomaly maps between inputs
and predicted outputs. Additionally, segmentation perfor-
mances are reported in Table 8. Incorporating lvlb and SSIM
loss with the L2 measure notably reduces uncertainty in the
direct difference between input and output, as shown in Ta-
ble 7. However, this improvement in uncertainty comes at
the expense of reduced segmentation performance. Notably,
the L2 with lvlb exhibits better Dice, IOU, and AUC metrics
but is deemed less trustworthy.



Table 8. Performance comparison of DTU-Net’s segmentation capabilities across various objective functions. DTU-Net is trained using
different loss functions without averaging multiple sample outputs, employing square error as a predictor for the mask. Best-performing
results are highlighted in bold. Integrating multiple objectives enhances model reliability and overall performance.

Loss function Dice IOU AUC Precision Recall
L1 0.3861 ± 0.2267 0.2657 ± 0.1912 0.6961 ± 0.1222 0.4436 ± 0.2281 0.4192 ± 0.2870
L2 0.3970 ± 0.2320 0.2757 ± 0.1958 0.6946 ± 0.1225 0.4415 ± 0.2235 0.4454 ± 0.2977
SSIM 0.3541 ± 0.2259 0.2401 ± 0.1838 0.6717 ± 0.1180 0.4083 ± 0.2175 0.3737 ± 0.2776
MS-SSIM 0.2239 ± 0.1471 0.1347 ± 0.1049 0.6682 ± 0.1170 0.5827 ± 0.202 0.1549 ± 0.1258
L2+lvlb 0.4210 ± 0.2390 0.2977 ± 0.2081 0.7084 ± 0.1247 0.4634 ± 0.2350 0.4621 ± 0.2953
L2+lvlb+SSIM 0.2772 ± 0.2080 0.1802 ± 0.1608 0.6810 ± 0.1395 0.5858 ± 0.2127 0.2124 ± 0.1987
L2+lvlb+MS-SSIM 0.2648 ± 0.1947 0.1691 ± 0.1477 0.6791 ± 0.1303 0.5891 ± 0.1943 0.1980 ± 0.1804


