EvoCL: Continual Learning over Evolving Domains - Appendix

A. Additional Analyses

In addition to the experiments performed in the main pa-
per, we perform some additional studies pertaining to var-
ious aspects of EvoCL. Firstly, we conduct a series of ex-
periments that showcase EvoCL’s performance in a Class
Incremental Learning setting, as opposed to the Task Incre-
mental Learning setting presented in the main paper. This is
presented in Section A.1. Secondly, we conduct a series of
experiments varying the number of training domains. This
is done to show that EvoCL is capable of ensuring good gen-
eralization performance even when presented with a limited
set of training domains, as opposed to other baselines which
seem to take a palable hit to performance. The results of this
series of experiments is summarised in Section A.2. Finally,
we evaluate the robustness of EvoCL to varying orders of
tasks, the results of which are presented in Section A.3.

A.1. Class Incremental EvoCL

The primary experiments dealt with a Task Incremen-
tal Learning (TIL) setup where each domain enclosed tasks
which appear in a sequence. EvoCL can also be applied
to a Class Incremental setting. Class Incremental Learning
(CIL) can be disintegrated into a two step process:

1. Infer the task identity
2. Perform classification within inferred task

Given that our setup performs the second step when pro-
vided with a task identity, a mechanism to predict the task
identity is required to convert to a class incremental set-
ting. In pursuit of that, we employ a strategy that is centered
around entropy.

From an information theoretic standpoint, we define en-
tropy H of a random variable as a measure of uncertainty
alluded to its various possible outcomes. In other words, a
state with a high entropy means greater uncertainty and vice
versa. Formally, entropy is defined as follows:

H(x) = — ) p(z)logp(z) 1)

xeX

In our case, when we calculate entropy of the logits, a
state with a distribution peaked at one of the classes would
signal greater confidence that translated to a lower entropy.

Algorithm 1 Class Incremental Learning: Inference Algo-
rithm

Input: Sequence of tasks from domain D + 1, SP+1
Models: Domain Predictor R(&; A\*), Hypernetwork
H(E, 7; ¢) & Classifier F(x;0)

Ep+1 < R(Epi )
fork=1,2,..., K do
0P H(Eptr, h; 0)
D1 PP
P
end for
k < argming (rPt)
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A flat distribution, on the other hand, signals lower confi-
dence in the prediction and thus, greater entropy.

With this in mind, during inference, we predict the log-
its zg for all the classifiers pertaining to each task identity.
We then calculate their respective entropies r,‘f. We choose
the classifier 6 that results in logits that possess the lowest
entropy. We summarise our CIL inference methodology in
Algorithm 1. Note that we define the classifier with its logit
output in place of the class prediction as F.

We compile the results of our CIL Experiments in Figure
1 that follows: It can be observed that while performance
deteriorates a little, as is with CIL setups when compared to
TIL setups in general, EvoCL still outperforms its baselines
and maintains its lead across all the datasets.

A.2. On the effect of training domain numbers

All of our experiments entailed 5 training domains.
Herein, we perform a study to investigate the effects of hav-
ing a varying number of training domains on the general-
ization accuracy of the test domain. We employ the CIFAR
10 example with a domain delta of 0.2, the same as with
the standard experimental setup. We conduct a range of ex-
periments starting with just 2 training domains and working
the way up to 10 training domains. We train for a single
epoch, similar to the primary experiments. We compare our
model’s performance on the unseen test domain with the
leading baselines DRAIN and Progressive Finetuning (Pro-
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Figure 1. Average task accuracy on unseen test domain in a Class Incremental setting. EvoCL(ours) is compared with Progressive

Finetuning (ProTune) and DRAIN.

Table 1. Classification accuracy for various task orderings on tasks from the test domain.

Task Order Task1 Task2 Task3 Task4 TaskS Average Accuracy
1,2,3,4,5 94.864 93.939 91.251 90.943 85.877 91.3748
5,4,3,2,1 90.197 92814 86.255 93.172 91.699 90.8274
4,2,1,3,5 92466 94974 91411 86.295 92.565 91.5422
2,4,5,1,3 928064 93.74 88.943 91.042 85.051 90.328
531,42 91.082 88.624 92.366 93.72 9571 92.3004
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Figure 2. Chart plotting number of training domains against the
average accuracy across all tasks on an unseen test domain. Re-
sults displayed are on the CIFAR 10 dataset.

Tune). We present our results in Figure 3.

Our model displays a palpable performance lead on un-
seen domains even when trained on as little as two do-
mains. EvoCL maintains a solid performance lead over
both DRAIN and Progressive Finetuning on the CIFAR 10
dataset.

We perform the same experiment with the Rotating

MNIST dataset to more concretely display EvoCL’s supe-
rior performance in generalizing to future unseen domains
even when the number of training domains is low. Progres-
sive Finetuning is only able to catch up with EvoCL’s per-
formance only when trained on a lot of domains. DRAIN’s
performance too improves with more training domains but
its performance falls short when compared to EvoCL and
Progressive Finetuning. The results of this experiment are
compiled in Figure 3.

A.3. On the impact of varying task ordering

In Continual Learning, it is sometimes observed that
changing the ordering of tasks can lead to different out-
comes. To investigate if such a behaviour exists in EvoCL,
we conduct experiments on the CIFAR 10 dataset with vary-
ing task orders. We summarise our results in Table 1. It
can be observed that changing up the ordering in which the
tasks appear does not seem to lead to significant differences
between the various configurations.

A.4. Effects of Evolution Rate Perturbation

In our primary experiments, we proceed with the as-
sumption that the rate at which the domain evolves is con-
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Figure 3. Chart plotting number of training domains against the
average accuracy across all tasks on an unseen test domain. Re-
sults displayed are on the MNIST dataset.

stant. In real-world settings, this might not always be the
case and even when it is, the data sampling intervals might
not be uniform. This requires that any approach to mod-
elling the evolution of domains is robust to such inconsis-
tencies. To study and evaluate the robustness of EvoCL,
we conduct a series of experiments where the rate of evo-
lution is perturbed. We experiment with varying levels of
perturbation and present our findings in Table 2. If A is the
difference between each domain, we perturb the domains to
the extent of A &+ k - A where k& = 0.25,0.5.0.75.1.0.

Table 2. Comparison of various perturbations to evolution rate.

k MNIST CIFAR10 FMNIST+

0 96.75 90.94 98.56
0.25 96.55 90.83 98.43
0.5 96.12 90.42 98.16
0.75 95.34 89.67 97.33
1.0 94.26 88.94 96.45

A.5. Non-uniform task subsets across domains

We consider non uniform task subsets by dropping one
task for each domain. We find that knowledge transfer be-
tween tasks enables strong generalisation and upholds per-
formance even in the absence of some tasks in between. We
present our findings in Table 3.

Table 3. Comparison of standard and non uniform task settings.

k MNIST CIFAR10 FMNIST+
Standard 96.75 90.94 98.56
Non Uniform 91.55 86.83 95.43




