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Anonymization Degree vs. Identity Distance

Our anonymization approach features a single adjustable
parameter, d, which controls the degree of anonymization.
Figure | illustrates how the identity cosine distance, mea-
sured using the FaceNet [12] recognition model, changes
with varying degrees of anonymization. This analysis was
conducted using dozens of identities and seeds from our
CelebA-HQ [7] and FFHQ [8] test sets. We selected 50
identities from each dataset. For each identity, we applied
six different degrees of anonymization (d values of 0.3, 0.6,
0.9, 1.2, 1.4, 1.5). For each anonymization degree, we cre-
ated 10 variations using 10 different seed values. The plot
displays the average cosine distance of these variations for
each anonymization degree. It reveals a clear trend: as the
degree of anonymization increases, the identity distance be-
tween the anonymized and original images grows wider.

Optimizing Face Anonymization

Increasing the anonymization degree parameter, d, re-
sults in a greater divergence from the original identity, but
beyond a certain range, it can hinder the model’s abil-
ity to generate realistic faces. We followed prior research
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Figure 1. Relationship between degree of anonymization and iden-
tity distance.
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methodologies [1, 4, 6] and used face detection to assess
the validity of synthesized faces. We applied six different
anonymization levels (d values of 0.3, 0.6, 0.9, 1.2, 1.4,
and 1.5) to 250 facial images from our CelebA-HQ [7] test
set and evaluated the detection rate with two face detectors,
RetinaFace [2] and DIib [9]. As shown in Fig. 2, when d
reaches 1.5, the face detectors begin to flag invalid faces
among the 250 generated, indicating that d values above
1.5 are unsuitable for maintaining realistic outputs. Fig-
ure 2 also includes an example illustrating the unrealistic
faces generated by our model at higher d values.

While higher d values create more distinct face shapes
for anonymization, they compromise the preservation of
non-identity related facial attributes. We again applied the
same six levels of anonymization to 250 facial images from
our CelebA-HQ [7] test set and measured the attribute dis-
tances for face shape, pose, gaze, and expression. Fig-
ure 3a reveals that higher d values produce more distinctive
face shapes, but this comes at the cost of preserving non-
identity-related attributes. This trend is further illustrated in
Figs. 3b to 3d, aligning with our expectations.

We also evaluated the attribute distance performance of
two state-of-the-art anonymization methods, FALCO [1]
and DP2 [5], on the same 250 test images, presenting their
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Figure 2. Face detection rates at various anonymization degrees.

95

0.4 0.6 0.8 1.0 1.2 1.4
Anonymization Degree (d)



Identity Distance Attribute Distance Image Quality
Re-ID 1 Shape | Pose | Gaze | Expression | Face IQA 1
CelebA-HQ FFHQ | CelebA-HQ FFHQ | CelebA-HQ FFHQ | CelebA-HQ FFHQ | CelebA-HQ FFHQ | CelebA-HQ FFHQ
DiffSwap [14] 0.114 0.162 16.590 17.914 0.034 0.041 0.151 0.164 2.682 3.195 0.549 0.542
BlendFace [13] 0.693 0.642 13.234 16.497 0.028 0.036 0.120 0.148 3.170 4.102 0.527 0.511
InSwapper [3] 0.871 0.830 11.558 14.300 0.035 0.042 0.158 0.177 4.197 4.872 0.364 0.371
Ours 0.566 0.310 17.211 22.312 0.036 0.043 0.139 0.149 4.067 4.745 0.728 0.720

Table 1. Quantitative results on the task of face swapping for CelebA-HQ [7] and FFHQ [8] test sets, with the best results highlighted in

bold and the second-best results underlined.
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Figure 3. Changes in facial features at different anonymization
degrees.

results in Fig. 3. For the FALCO [I] method, we set its
identity loss margin value to 0. This configuration maxi-
mizes the identity difference between the anonymized result
and the original image, but it compromises the preserva-
tion of non-identity facial attributes. Figure 3a reveals that
when the d value exceeds 1.2, our method begins to out-
perform these methods in producing more distinctive face
shapes. Additionally, our method may continue to outper-
form them in preserving facial expressions until d reaches
approximately 1.3, as illustrated in Fig. 3b. Based on our
empirical results, we recommend an optimal d range of 1.2
to 1.3 to achieve the ideal balance between identity obfus-
cation and attribute preservation. Within this range, our
method also demonstrates superior performance compared
to current state-of-the-art anonymization techniques.

Dataset Preparation for Model Training

For training our model, we used three datasets:
CelebRef-HQ [11], CelebA-HQ [7], and FFHQ [8]. We
used all 10,555 images from CelebRef-HQ [11], which
contains 1,005 identities with multiple images per identity
showing varied expressions and angles. For CelebA-HQ [7]

and FFHQ [8], we employed face recognition to identify
same-person images, selecting 6,203 images (2,506 identi-
ties) from CelebA-HQ [7] and 7,816 images (2,887 identi-
ties) from FFHQ [&]. For each identity, we randomly chose
two images: one as the source and one as ground truth. We
then created a synthesized driving image by using a state-
of-the-art face swapping model [3] to replace the face in the
ground truth image with another person’s face. This process
resulted in 153,414 source-driving image pairs for train-
ing: 49,518 from CelebA-HQ [7], 42,188 from CelebRef-
HQ [11], and 61,708 from FFHQ [£].

Qualitative Results of Anonymization

Figures 4 to 9 present additional qualitative results of our
anonymization technique. We showcase these results using
images from our test sets in FFHQ [8] and CelebA-HQ [7]
databases. We also compare our method’s performance
against the same set of anonymization techniques [1, 5, 10]
discussed earlier in our paper.

Face Swapping Results

Although face swapping is not the primary focus of our
research, our model initially develops this capability as part
of its anonymization process. To demonstrate its effective-
ness, we present additional face swapping examples using
the FFHQ [8] and CelebA-HQ [7] datasets in Figs. 10 to 13.
We also compare our results to established face swapping
benchmarks [3, 13, 14] discussed in our paper. These com-
parisons showcase our model’s superior ability to generate
high-quality facial images.

Furthermore, Tab. 1 provides quantitative results for the
face swapping tasks. These results indicate that our model
achieves superior Image Quality Assessment (IQA) scores
across both datasets. While both DiffSwap [14] and our
model can natively generate high-resolution images at 512
X 512, our model achieves an IQA score that is more than
30% higher than DiffSwap’s [14]. This improvement is
likely due to our use of ReferenceNet, which encodes fine-
grained features and enables our model to produce higher
quality facial images.



Societal Impact of AI-Generated Faces

Al-generated faces present a dual challenge in our dig-
ital world. While they can enhance privacy by offering
anonymity, they also create opportunities for malicious ac-
tivities. Scammers might use these synthetic identities to
produce more convincing deceptions, potentially eroding
trust in online interactions and media. To address these
risks, a comprehensive strategy is essential. This includes
technological solutions such as advanced watermarking and
Al detection systems, along with legal frameworks regulat-
ing the use of synthetic faces. Additionally, raising public
awareness about this technology and its potential misuse is
crucial. Establishing clear industry standards for the ethi-
cal creation and application of Al-generated faces will help
balance their benefits while protecting social trust. A co-
ordinated effort across technological, legal, and educational
fronts is vital for maximizing the positive potential of this
innovation while minimizing its societal drawbacks.
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Figure 4. Qualitative results on the task of face anonymization for CelebA-HQ [7] test set.
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Figure 5. Qualitative results on the task of face anonymization for CelebA-HQ [7] test set.
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Figure 6. Qualitative results on the task of face anonymization for CelebA-HQ [7] test set.
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Figure 7. Qualitative results on the task of face anonymization for FFHQ [&] test set.
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Figure 8. Qualitative results on the task of face anonymization for FFHQ [£] test set.
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Figure 9. Qualitative results on the task of face anonymization for FFHQ [£] test set.



Source Driving Ours InSwapper [3] BlendFace [13] DiffSwap [14]

Figure 10. Qualitative results on the task of face swapping for CelebA-HQ [7] test set.
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Figure 11. Qualitative results on the task of face swapping for CelebA-HQ [7] test set.
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Figure 12. Qualitative results on the task of face swapping for FFHQ [8] test set.
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Figure 13. Qualitative results on the task of face swapping for FFHQ [8] test set.



