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1. 2nd Order Derivatives as Convolution

In this section we go into more details about expressing

image derivates as convolutional operation.

Let I(x, y) ∈ R be an image. The gradient representation

∇I(x, y) = (Ix, Iy)(x, y) ∈ R
2 is computed as a convolu-

tion with gradient filters fx and fy:

Ix(x, y) := (I ∗ fx)(x, y) (1)

Iy(x, y) := (I ∗ fy)(x, y) (2)

There exists a variety of different gradient filters. In this

paper, we consider the kernel defined by finite difference:

fx =
(

−1 1 0
)

fy =
(

−1 1 0
)T

In order to extract the original image I∗ from its gra-

dients, one can solve the Poisson equation as described by

Perez et al. [5]:

∆I∗ = divv (3)

=
∂I

∂x2
+

∂2I

∂2y2
(4)

= ∆I (5)

The original image can be restored using deconvolution

of discrete the Laplace operator. There are various ways

to approximate derivatives in the discrete domain. In the

following we define the second-order derivatives such that

they are consistent with the Laplace operator:

∆I =
∂I

∂x2
+

∂2I

∂2y2
= I ∗





0 1 0
1 −4 1
0 1 0



 (6)

The Laplace operator is defined as the sum of second-order

derivatives. We can define the second-order derivatives such

that they are consistent with the Laplacian:

∂I

∂x2
:= Ix ∗ fr

x (7)

= I ∗ fx ∗ fr
x (8)

= I ∗
(

0 −1 1
)

∗
(

−1 1 0
)

(9)

= I ∗
(

1 −2 1
)

(10)

∂I

∂y2
:= Iy ∗ f

r
y (11)

= I ∗ fy ∗ f
r
y (12)

= I ∗
(

0 −1 1
)T

∗
(

−1 1 0
)T

(13)

= I ∗
(

1 −2 1
)T

(14)

The gradient filters are flipped, inverted and convolved

again with their respective gradient images. If we compute

their sum, they should be equivalent to the Laplacian.

∂I

∂y2
+

∂I

∂y2
= Ix ∗ fr

x + Iy ∗ f
r
y (15)

= I ∗ fx ∗ fr
x + I ∗ fy ∗ f

r
y (16)

= I ∗ (fx ∗ fr
x + fy ∗ f

r
y ) (17)

= I ∗
(

(

1 −2 1
)

+
(

1 −2 1
)T

)

(18)

= I ∗





0 1 0
1 −4 1
0 1 0



 (19)

An image can be reconstructed from its Laplacian image

using deconvolution:

∆I = I ∗ f∆ (20)

⇔ F(∆I) = F(I) · F(f∆) (21)

⇔ I = F
−1(F(∆I)/F(f∆)) (22)

Here F describes the Fourier transform. Using the convo-

lutional theorem the convolution is described as a multipli-

cation frequency domain.
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Figure 1. Visualization of the amplitude of the Discrete Fourier

Transform of a Laplace filter.

2. Singularities

Equation (22) describes a division in the frequency do-

main. However, this ignores singularities. Figure 1 visual-

izes the amplitudes of the Discrete Fourier Transform of a

Laplace filter. As one can see the 0-th frequency (the center)

has an amplitude of zero. When dividing in the frequency

domain we set the 0-th frequency to 0, since the division

is not defined there. The 0-th frequency of a signal repre-

sents the constant offset of the signal. By setting the value

to zero, we implicitly assume that the restored signal is also

centered around zero. Thus, the solution described by the

deconvolution is only correct up to a constant offset. In our

restoration model we use the average pixel intensity over all

input images as a heuristic to estimate the offset.

3. Evaluation

In this section we show provide more detailed evalu-

ation result. We used the synthetic rendering to generate

additional evaluation datasets DEval, DLight and DOcc.

Figure 2 illustrates samples from the different datasets.

DEval is a test set containing samples that follow the same

data distribution as our training data. DLight only contains

illumination changes and shadows, the occlusions are made

invisible. DOcc has only diffuse illumination and only

contains occlusion. Figures 3 to 5 show the performance

of our models on each dataset. Figures 3 and 4 have

very consistent results. Swin-Mix has an overall good

performance on DEval and DLight. The results also show

that gradient information consistently improves restoration.

Swin-∇ has a high SSIM, but worse PSNR and RMSE. The

loss of the exact color range affects PSNR and RMSE more

than SSIM.

As can be seen in Fig. 5 the results from DOcc deviate

significantly. Unsupervised methods perform better and re-

sult in perfect restoration. For PSNR we clipped the maxi-

mal value at 40, since we get numerically unstable values.

Pixel-wise median and RPCA have a PSNR of ∞.

Figure 2. First row show a sample from DEval. Second row shows

samples from DLight and the last row shows DOcc.
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Figure 3. Evaluation results for the test set DEval
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Figure 4. Evaluation results for the dataset containing only illumi-

nation changes DLight
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Figure 5. Evaluation results for the dataset containing only occlu-

sion DOcc

4. Ablation Studies

For all models we used the same number of residual

blocks and feature maps, except for the corresponding input

and output layers. The Video Swin Transformer is param-

eterized by its token sizes (T ×H ×W ) and the attention

window (P × M × M). We trained all four variations by

adjusting these parameters. All models were trained with a

batch size of 30 for 100 epochs.

We evaluate the models on DEval. Section 4 shows that
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Figure 6. Performance comparison for all four Swin-Transformer

variations using various patch sizes and attention windows.

smaller patch sizes and smaller window sizes are consis-

tently better. Overall (1×4×4) is the preferable patch size

(3× 3× 3) the preferable window size.

5. Visualizations

The following section compare restoration results on the

evaluation set of the synthetic dataset SIDAR [3]. The re-

sults visualize the generalization of the method to new im-

age sequences.

Additionally, we do qualitative comparisons of the same

methods for background subtraction. The WALT dataset

is used [6]. It contains static time-lapse videos of traffic

cameras. The images were sampled at random and contain

moving foreground objects and changing illumination.

5.1. Synthetic Results

Figures 7 and 8 visualize the restoration results on sev-

eral synthetic image sequences. Overall Swin-Grad has

consistently better SSIM results, but RMSE/PSNR varies

for each sequence. As can be seen in Fig. 7 Swin-Grad has

a worse RMSE/PSNR, while the restoration seems the most

correct. This effect is likely due to incorrect color estima-

tion. Swin-RGB restores the exact colors better resulting in

lower scores. SSIM seems less sensitive to color variation

and compares the image content better.

5.2. Real Results

The image restoration methods are also evaluated on real

image sequences. Note that the supervised methods were

only trained on synthetic image artifacts. Figures 9 to 11

show that Swin-∇ generalizes better than all the other su-

pervised methods using the RGB domain. The results indi-

cate that the other methods overfit to the image distortions

of the synthetic dataset. As seen in Fig. 11 Swin-Mix tends

to remove the most artifacts, e.g. cars, lights, shadows etc.,

however as with all RGB models it also darkens the image

and the restoration doesn’t seem as visually consistent as in

Swin-∇.

Swin-RGB 
 RMSE: 0.13 
 PSNR: 17.99 
 SSIM: 0.94

Swin-RGB+ 
 RMSE: 0.15 
 PSNR: 16.57 
 SSIM: 0.96

Swin-  
 RMSE: 0.22 
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 SSIM: 0.96
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 SSIM: 1.00

Figure 7. Input sequence and restoration results for a synthetic

image sequence.
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Figure 8. Input sequence and restoration results for a synthetic

image sequence.

6. Gradient-Based Image Restoration

6.1. SwinIR3D

To explore the capabilities of gradient-based models for

general image restoration we adopt SwinIR [4] to our use-

case. We name the new architecture SwinIR3D. Figure 12

shows the architecture. The only difference to the original

implementation is that the 2D Swin transformer is replaced

with a 3D Swin transformer and the aggregation of features.

This model is also very similar to our architecture. The

main difference is the shallow feature extraction as the in-

put layer and the reconstruction module as the output layer.

Otherwise we use the same 3D Swin transformer configura-
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Figure 9. Input sequence and restoration results for a real time-

lapse sequence.
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Figure 10. Input sequence and restoration results for a real time-

lapse sequence.

tion of 1× 4× 4 patches and a windows size of (3× 3× 3)

6.2. Image Distortions

We train and evaluate SwinIR3D on a various image

restoration tasks. Given any input image we generate a

sequence of distortions. Using the library imgaug [2] we

can generate various distortions, such as Gaussian noise,

blurring, JPEG compression and color changes. Figure 13

show the effect of the image augmentations. Our model

should learn to aggregate information across multiple im-

ages. That’s why we also introduce variation in each dis-

tortion. For example, we use various methods for blurring,

such as motion blur, Gaussian blur and defocus. We use var-

Swin-RGB Swin-RGB+ Swin- Swin-Mix

MLE Median AVG RPCA

Figure 11. Input sequence and restoration results for a real time-

lapse sequence.
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Figure 12. SwinIR3D Architecture

ious levels of JPEG compression. To simulate color changes

we multiply or add random values to the image intensity.

In addition we also generate random masks before apply-

ing the same transformation, this creates effects similar to

shadows and specular highlights.

6.3. Training & Evaluation

We create four variations of SwinIR3D and train them

on the DIV2K dataset [1]. We train each model on each

image restoration task. Each input image is augmented into

a sequence of 8 distorted images. We use a batch size of 14

and train for 500 epochs. We use an Adam optimizer with a

learning rate of λlr = 10−3.

For evaluation we use the same testing set (Set5 +

Set14 + BSD100 + Urban100 + Manga109) as described

in SwinIR [4].



(a) Gaussian Noise

(b) Blur

(c) JPEG compression

(d) Color changes

Figure 13. An illustration of various image distortions.
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