Boosting Semi-supervised Video Action Detection with Temporal Context
—Supplementary Material—

This supplementary material provides more implemen-
tation details (Section 1), additional ablation studies and
an algorithm table of the global-local context fusion (Sec-
tion 2) and more qualitative results (Section 3).

1. Implementation Details

GPU. Throughout the entire training and evaluation pro-
cesses on both UCF101-24 [10] and JHMDB-21 [5]
datasets, we utilized a single NVIDIA A100-80GB GPU.
Evaluation Protocol. Following previous studies [7, 14],
for evaluation, we divided each video in the test set into
several clips, each consisting of 8 frames. If there were not
enough frames to form a clip due to misalignment with the
video frame count, we zero-padded those missed frames to
form the clip. After creating such clips for evaluation, we
assessed our method on a clip-by-clip basis.
Hyper-parameter Selection. The update ratio 5 in Eq.
(5) and 7 in Eq. (8) in the paper is set to 0.995 and 0.1,
respectively, following common practices in various semi-
supervised frameworks [1,2,8] and [6,9].

Training Epochs. For UCF101-24 [10], we trained the
model for 250 epochs, while for JHMDB-21 [5], we trained
it for 150 epochs in an end-to-end manner.

Training on AVA [4] with TubeR [13] and STMixer [12].
During training on AVA with TubeR, feature maps used
for spatio-temporal semi-supervised learning are mainly ob-
tained from the intermediate features of its backbone (CSN-
50 [11]). For STMixer, we utilize 4-D feature from its video
backbone (SlowFast [3] in the experiment).

2. Additional ablation studies and algorithm
table of the global-local context fusion

Performance on corrupted clips. We found that the pro-
posed temporal consistency learning significantly enhances
performance on corrupted clips, where misaligned bound-
aries at the video’s end cause temporal misalignment. We
conducted an experiment comparing models trained with
(denoted as ST) and without (denoted as S) temporal con-
sistency losses on corrupted and normal clips from each
dataset’s test set. “Corrupted” clips have incomplete frames
(e.g., some frames are missing and zero-padded), while
“normal” clips have all frames intact. Corrupted clips con-
stitute 6% for UCF101-24 and 37% for JHMDB-21 of all
clips used for evaluating test set performance. Results in
Table 1 show that the model trained with proposed tempo-
ral consistency losses achieves a smaller performance gap
between corrupted and normal clips across all settings.

. \ f-mAP | v-mAP

Dataset ‘ Method | Clip status ‘ 03 035 ‘ 03 03
ST normal. | 93.0/79.9 81.0/69.4 | 98.2/84.7 84.0/72.9
UCF101-24 corrupted. | 85.1/77.5 64.0/59.5 | 79.4/66.0 59.7/49.3
B s normal. | 91.7/77.8 785/67.6 | 97.9/81.8 80.4/68.2
corrupted. | 75.9/69.9 56.3/51.0 | 78.8/60.1 46.3/41.2
ST normal. | 99.4/389 88.1/38.0 | 99.5/39.0 89.7/37.7
JHMDB-21 corrupted. | 92.0/37.1 71.0/29.6 | 96.5/36.8 72.5/31.2
) s normal. | 99.3/36.3 83.6/34.8 | 99.0/38.0 86.9/35.5
corrupted. | 88.4/34.7 555/263 | 95.7/34.8 57.3/25.9

Table 1. Ablation studies of performance on corrupted and nor-
mal clips for each type of model, S and ST on UCF101-24 and
JHMDB-21 test set. Performance is presented first without the ac-
tion label, followed by its inclusion after the ‘/°.

UCF101-24 JHMDB-21

Method f-mAP v-mAP f-mAP v-mAP

0.5 0.2 0.5 0.5 0.2 0.5
Random | 79.5/67.9 97.0/83.7 82.1/71.3 | 81.2/35.1 97.1/38.5 81.2/354
Fixed 80.0/68.8 97.1/83.5 825/71.5 | 81.8/349 98.5/38.2 83.3/35.3

Table 2. Ablation studies of the impact of the sampling method for
shared frames on UCF101-24 and JHMDB-21 test sets.

UCF101-24 JHMDB-21

m f-mAP v-mAP f-mAP v-mAP

0.5 0.2 0.5 0.5 0.2 0.5

2 | 77.5/66.1 97.3/81.2 81.1/70.0 | 81.1/342 97.1/37.4 79.9/34.8
4 |80.0/68.8 97.1/83.5 825/71.5 | 81.8/349 98.5/38.2 833/353
6 | 80.1/68.7 97.0/832 822/71.3 | 81.6/355 974/38.1 81.0/358

Table 3. Ablation studies of the impact of the number of the shared
frames m on UCF101-24 and JHMDB-21 test sets.

UCF101-24 JHMDB-21
T f-mAP v-mAP f-mAP v-mAP
0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5

92.5/79.8 80.0/688 97.1/83.5 825/71.5|97.0/382 81.8/349 985/382 83.3/353
923/79.5 79.8/68.1 97.1/83.1 82.3/70.9 | 96.4/36.7 80.1/33.6 98.1/36.9 79.7/342

v
X

Table 4. Ablation studies for constructing paths in time-ordered
manner on UCF101-24 and JHMDB-21 test sets. T denotes time-
ordered paths.

UCF101-24 JHMDB-21
s f-mAP v-mAP f-mAP v-mAP
0.2 0.5 0.2 0.5 02 05 02 05

w

92.5/79.8 80.0/68.8 97.1/835 825/71.5]97.0/382 81.8/349 98.5/382 833/353
92.4/80.1 80.5/69.0 97.0/83.7 829/72.0 | 97.5/383 81.7/350 99.0/384 832/358
92.7/80.2 80.6/69.4 97.3/84.0 829/72.2|97.8/38.5 82.0/353 99.0/385 83.8/36.0

w

)

Table 5. Ablation studies of the number of sampled paths s for
the global-local context fusion on UCF101-24 and JHMDB-21 test
sets.

Sampling method for shared frames. During semi-
supervised learning, we kept the number of shared frames
m fixed at 4, as explained in Section 4.1. We investigated
the impact of two sampling methods for shared frames on
the UCF101-24 and JHMDB-21 test sets: one with a ran-
dom number of shared frames (2 to 7 out of 8) and the other
with a fixed number of shared frames (4, as described in the
paper). Results in Table 2 show performance improvement
in 8 out of 12 cases with the fixed method.



UCF101-24 JHMDB-21
Type f-mAP v-mAP f-mAP v-mAP

Algorithm 1 Global-Local Context Fusion

02 05 02 05 0.2 05 02 05

B |91.8/799 795/68.6 96.6/834 823/715|967/38.1 80.5/33.3 98.7/383 78.9/32.1
S | 91.3/79.6 79.1/679 96.9/83.1 81.8/70.9 | 949/357 78.8/324 97.7/37.9 77.3/33.1
T |925/798 80.0/68.8 97.1/835 82.5/715|97.0/382 81.8/349 98.5/382 83.3/353

Table 6. Ablation studies of design choices for the global-local
context fusion on the UCF101-24 and JHMDB-21 test sets. B de-
notes the fusion is applied to both output of the student and teacher
networks, and S and T denote that the fusion is only applied to
the output of the student and teacher network, respectively. Per-
formance is reported without the action label, then with the label
included (separated by ‘/’). The best and second best results are
marked in bold and underline, respectively.

Impact on the number of shared frames m. The shared
frames between two overlapped clips is important for semi-
supervised learning in the temporal domain, as outlined in
Eq.(7) and Eq.(8). We examined the impact of varying the
number of shared frames m. Results, summarized in Ta-
ble 3, indicate that m = 4 yielded the best performance in
most cases.

Time-Ordered Paths for GLF. In global-local context fu-
sion (GLF), we aggregate and propagate information in the
temporal domain in a time-ordered manner. This strategy
is essential as the temporal evolution of a video offers cru-
cial cues for content understanding. We conducted abla-
tion studies comparing paths constructed in a time-ordered
manner to randomly constructed ones. Results in Table 4
demonstrate the superiority of this design choice.

Effect of the number of sampled paths s per target
frame in GLF. In GLF, we randomly sample s paths per
target frame for temporal dropout regularization with com-
putational efficiency. We investigated the impact of varying
the number of paths per target frame. Results in Table 5
demonstrate a general performance improvement with in-
creasing sampled paths. Though more sampled paths result
in better performance, we did not increase the number of
paths further for computational efficiency; please note that
three paths were enough to attain the state-of-the-art.
Applying Global-Local Context Fusion to Both Outputs
of the Student and Teacher Networks. We apply the
global-local context fusion to the output of the teacher net-
work, as it provides pseudo-supervision to the student net-
work. Ablation studies of this design choice are conducted,
and the results are shown in Table 6, demonstrating that our
method (T) achieved either the best or second-best perfor-
mance for all evaluation settings.

Algorithm table for the global-local context fusion. We
provide the algorithm table for the global-local context in
Algorithm 1.

3. More qualitative results

In this section, we present additional qualitative results
in Fig. 1 and Fig. 2 on the test sets of UCF101-24 [10]

Input: Unlabeled video X, Pseudo localization map
M € {0,1}*"*w_Pixel-wise feature embedding E €
Rnxdxhxw
Output: Fused feature embeddings for each target frame
NewEmbs < [] > Empty feature list for each frame
for j = 1tondo
Q2 « {calculate all possible paths for v; }
Q; < sample($;, s) > Sample s paths from
Candid; <[] > Empty feature list for each path
1+ 0
for p in Q2 do
for | = 0 to length(p) — 2 do
vs, v P[], p[l + 1]
E; ifl =0,

Es + .
Epey  otherwise

E? «+ g(Es, M), ET « g(Es,~Mj)

g JIERe By i My =1,
bk f(E™® E,}) otherwise
Epev < E,
end for
Candid; [i] + E,
14—1+1
end for

EY < average(Candid;) > Average over Candid; to
get final fused feature

NewEmbs|[j] < E
end for
Output NewEmbs

and JHMDB-21 [5], respectively. Moreover, we present
qualitative results in Fig. 3 to demonstrate the effectiveness
of the global-local context fusion (GLF) on the test set of
UCF101-24, including a case of corrupted clip (Cliff Div-
ing).

References

[1] Zexi Chen, Benjamin Dutton, Bharathkumar Ramachandra,
Tianfu Wu, and Ranga Raju Vatsavai. Local clustering with
mean teacher for semi-supervised learning. 2020 25th Inter-
national Conference on Pattern Recognition (ICPR), pages
6243-6250, 2020. 1

[2] Mario Débler, Robert A. Marsden, and Bin Yang. Robust
mean teacher for continual and gradual test-time adaptation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 7704-7714,
June 2023. 1

[3] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
2019 IEEE/CVF International Conference on Computer Vi-



GT

Kuma
etal.

Ours

GT

Ours

(4]

(5]

(6]

<+— Diving — > «——  Diving Done

r

Skate boarding

Spiking

Basketball dunk
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Figure 3. Qualitative results on fest set of UCF101-24 [10] with GLF and without GLF
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