
Hierarchical Light Transformer
Ensembles for Multimodal Trajectory Forecasting (Supplementary material)

Notations Meaning

D = {Xi
1:T } The set of |D| agents’ trajectories lasting T time steps

A The number of agents

T The number of time steps

K The number of modes, i.e., components in the mixture distribution

K⋆ The number of meta-modes, i.e., components in the meta-mixture distribution

K ′ The number of modes within a meta-mixture component

a, t, k The indexes of the current agent, the current time step, the current mode

Xi = Xi
1:t The observed trajectories assuming t steps of context

Yi = Xi
t+1:T The target trajectories (i.e., ground-truth of the forecasts) assuming t steps of context

H The number of attention heads in multi-head attention layers

M The number of estimators in an ensemble, i.e., ensemble size

θk The set of weights of the kth-component of a parametric probabilistic mixture model

α The width-augmentation factor of HLT-Ens.

Pθ The probability density function of a parametric model where θ are the parameters

µθk
The mean of the kth-component of a Laplace mixture distribution parametrized by θ

bθk The scale vector of the kth-component of a Laplace mixture distribution parametrized by θ

πθ The probability vector corresponding to the a mixture weights

µ̄θk
The mean of the kth meta-mode of a Laplace mixture distribution parametrized by θ

b̄θk The scale vector of the kth meta-mode of a Laplace mixture distribution parametrized by θ

∆C The probability simplex in the RC space

Table 1. Summary of the main notations of the paper.
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A. Notations
Tab. 1 summarizes the main notations used throughout

this paper.

B. Implementation and Training Details
This section details our models’ implementation and

training procedure for the experiments. We expect to
release the corresponding code upon acceptance and
validation by our industrial sponsor. We implement all
networks using the PyTorch framework and train them
using an Nvidia RTX A6000, except for experiments on
Wayformer where a Nvidia Tesla V100 has been used. For
both datasets, we used the same simple preprocessing:

1. We transform all agents and lanes coordinates into
a scene-centric view, which is centered and oriented
based on the last observed state of a focal agent, i.e., an
agent having a complete track over the scene duration.

2. We keep only the 6 closest agents to the origin.

3. We keep only the 100 closest lanes to the origin.

Tab. 2 summarizes the hyperparameters of all our exper-
iments. Concerning the ε −WTA loss, we used ε = 0.05
as specified in [3]. For the EWTA loss, we set up the decay
over the top-n modes as described in Appendix B.

C. HWTA Loss Details
This section provides more explanations and insights on

the HWTA loss. First, we present how classification loss
terms are encompassed within the meta-mode and MWTA
losses. Then, we illustrate our loss behavior on a 2D toy
dataset (Fig. 1).

Sec. 4 defines both terms in HWTA loss as the NLL
loss of the meta-mixture and the best meta-mode mixture,
respectively. Yet, in practice, these terms are combined
with a classification loss. Indeed, we leverage the loss
formulation in [1] to define LC

meta and LC
MWTA:

LC
meta =

1

K

∑
Z

DKL(Q(Z)||Pθ(Z|Y,X)) (1)

LC
MWTA =

1

K ′

∑
Z′

DKL(Q(Z ′)||Pθ(Z
′|Y,X)), (2)

where Z and Z ′ are discrete latent variables correspond-
ing to the meta-modes and their respective modes. DKL(.||.)

1



(a) Ground truth distribution

(b) Predicted distributions of small MLP models using the mixture NLL loss (top), the WTA loss with the NLL (center), and
the HWTA loss with two meta-modes (in magenta and orange) (bottom)

Figure 1. Temporal 2D distributions



Argoverse 1 InteractionParameter Description
AutoBots ADAPT AutoBots ADAPT

d Hidden dimension used in all model layers 128 128 128 128
Batch size Batch size during training 128 128 128 128
Epochs Number of epochs during training 30 36 60 36
Learning rate Adam Optimizer initial learning rate 7.5e-4 7.5e-4 7.5e-4 7.5e-4
Decay Multiplicative factor of learning rate decay 0.5 0.15 0.5 0.15
Milestones Epoch indices for learning rate decay 5,10,15,20 25,32 10,20,30,40,50 25,32
Dropout Dropout rate in multi-head attention layers 0.1 0.1 0.1 0.1
K Number of modes of the baselines 6 6 6 6
H Number of attention heads 16 8 16 8
K⋆ Number of meta-modes for our approaches 3 2 2 2
K ′ Number of modes within a meta-mode for our approaches 2 3 3 3
α Width factor of HLT-Ens 1.5 2.0 1.5 2.0
γ Tradeoff of the HWTA loss 0.6 0.6 0.6 0.6

Table 2. Hyperparameters summary for both AutoBots and ADAPT backbones across all two datasets

Backbones Argoverse 1 Interaction

AutoBots 5,10,15,20,25 10,20,30,40,50
ADAPT 5,10,15,20,25 5,10,15,20,25

Table 3. Hyperparameter for the EWTA loss. This table reports
the epoch indices where the number of modes (n) to update is
decremented by 1. At initialization n = 6.

is the Kullback-Leibler divergence between the approx-
imated posterior and the actual posterior. As in [1], we
set Q(Z) = Pθold(Z|Y,X) and Q(Z ′) = Pθold(Z

′|Y,X),
where θold are the parameters before the optimization step.
Eq. (7) becomes:

L = γ×(Lmeta+LC
meta)+(1−γ)×(LMWTA+LC

MWTA) (3)

Inspired by [3], we utilize their custom toy dataset,
which comprises a two-dimensional distribution evolving
over time t ∈ [0, 1]. They achieve this by dividing a
zero-centered square into 4 equal regions and transitioning
from having high probability mass in the lower-left and
top-right quadrants to having high probability mass in the
upper-left and lower-right ones. Following their notation,
the sections are defined as:

S1 = [−1, 0[× [−1, 0[ ⊂ R2 (4)

S2 = [−1, 0[× [0, 1] ⊂ R2 (5)

S3 = [0, 1]× [−1, 0[ ⊂ R2 (6)

S4 = [0, 1]× [0, 1] ⊂ R2 (7)

S5 = R2\{S1 ∪ S2 ∪ S3 ∪ S4} (8)

and their respective probabilities being P (S1) =
P (S4) = 1−t

2 , P (S2) = P (S3) = t
2 , and P (S5) = 0.

Whenever a region is selected, a point is sampled from
it uniformly. Fig. 1a illustrates such distribution for
t ∈ {0, 0.5, 1}. To better illustrate the loss dynamics,
we train a basic three-layer fully connected network with
50 neurons in each hidden layer and ReLU activation
function, similar to [3]. Given the time t, we are interested
in modeling a two-dimensional distribution using K = 10
modes. We visually compare the effect of the mixture
NLL loss, the WTA loss combined with the NLL loss, and
our HWTA loss (assuming 2 meta-modes here) in Fig. 1b.
Although the NLL loss seems to capture the underlying
distribution better, the mode diversity is compromised by
some redundant modes, diminishing their coverage. The
WTA loss on the mixture NLL creates a Voronoı̈ tesselation
of the space, i.e., the modes are efficiently placed for cover-
age. Yet, it provides no information on what mode to keep
if we subsequently reduce the number of modes. On the
contrary, the hierarchy in our loss enables us to give 2 levels
of modeling. One can directly take the meta-modes to max-
imize coverage and diminish the overall number of modes.
We illustrate the benefit of this strategy in Appendix F.

D. Loss Parameter Sensitivity Study
This section showcases the effect of γ on our HWTA

loss L. In particular, Fig. 2 illustrates the performance
variation for different γ values. Note that for γ = 0.0
the meta-mode loss Lmeta is not used and for γ = 1.0 the
loss LMWTA is annealed. From our experiments, Lmeta is
necessary for better accuracy on most confident predictions
as we observe a dramatic decrease in mADE1 and mFDE1

E. Importance of the Width Factor
Our efficient ensembling architecture depends on two

hyperparameters. M corresponds to the ensemble size, and



Figure 2. Sensitivity analysis on γ (gamma) using AutoBots backbone on the Interaction dataset.

α, as a factor on the embedding size, controls the width of
the DNN. We evaluate the sensitivity of HLT-Ens to these
parameters by training models using the ADAPT backbone
on the Interaction dataset with various settings. Tab. 4 and
Tab. 5 showcase the effect of α for 4 and 8 subnetworks
respectively. Increasing α enables better results until it
reaches a plateau at the cost of more parameters.

F. Robustness Analysis over Mode Number

The number of modes is a critical hyperparameter sig-
nificantly impacting the model’s performance. Predicting
more modes and choosing the most confident ones is often
preferred to cover the true multimodal distribution. Yet, do-
ing so might decrease the diversity in the predicted modes
as the most confident mode is likely to have duplicates.
Using hierarchy in the mixture distribution, we showcase



Figure 3. Performance comparison under variations of the number of modes. We train three AutoBots using the Legacy loss, the
WTA loss, and the HWTA loss on Argoverse 1. We report their performance in terms of mADE3, mFDE3, mADE6 and mFDE6. For our
loss, we considered 6 meta-modes.

α value mADE1 ↓ mFDE1 ↓ mADE6 ↓ mFDE6 ↓ #Prm (M)

1 0.78 2.24 0.45 1.18 0.4
2 0.61 1.79 0.34 0.87 1.5
3 0.55 1.58 0.28 0.69 3.1
4 0.51 1.48 0.25 0.62 5.5

Table 4. Performance of HLT-Ens - ADAPT (averaged over
three runs) on Interaction wrt. α. Our ensemble has M = 4
subnetworks, with K = 2 meta-modes containing K′ = 3 modes
each.

that we can reduce our mixture complexity while retaining
most of its diversity. Fig. 3 illustrates the impact of the
number of modes over the performance on diversity metrics
(i.e., mADE6 and mFDE6). The comparison is done with
three different settings (Legacy loss, WTA loss, and HWTA
loss), all using AutoBots backbone and trained on Argov-
erse 1. Concerning our loss, instead of taking the 6 most
confident trajectories, we use the 6 meta-modes as a set

α value mADE1 ↓ mFDE1 ↓ mADE6 ↓ mFDE6 ↓ #Prm (M)

3 0.62 1.82 0.36 0.93 1.7
4 0.59 1.71 0.32 0.82 2.9
6 0.53 1.53 0.27 0.69 6.3
8 0.51 1.47 0.26 0.65 10.9

Table 5. Performance of HLT-Ens - ADAPT (averaged over
three runs) on Interaction wrt. α. Our ensemble has M = 8
subnetworks, with K = 2 meta-modes containing K′ = 3 modes
each.

of forecasts. Doing so seems to stabilize the performance,
suggesting our loss enables more robustness to variations in
the number of modes with a fixed number of meta-modes.

G. Diversity in Ensembles of Mixtures
Prediction diversity is essential for the performance

of ensembles. In [2], the authors present two sources of
stochasticity in the training process producing diversity



(a) DE similarity matrix (b) HLT-Ens similarity matrix

Figure 4. Similarity matrices for DE and HLT-Ens on Argov-
erse 1. We use the AutoBots backbone to construct ensembles of
size M = 3. For HLT-Ens, we set α = 1.5.

Method mADE1 ↓ mADE6 ↓ mFDE1 ↓ mFDE6 ↓ NLL3 ↓ NLL6 ↓ #Prm ↓

Sc
en

eT
ra

ns
fo

rm
er Single model

Legacy 0.66 0.21 1.50 0.39 18.57 17.23
HWTA (Ours) 0.48 0.26 1.17 0.52 -4.74 -11.15 11.8

Ensemble
DE 0.57 0.21 1.30 0.60 23.09 22.59 35.4
HT-Ens (Ours) 0.50 0.23 1.19 0.47 -7.34 -9.94 35.4
HLT-Ens (Ours) 0.49 0.25 1.17 0.53 -4.24 -9.59 8.9

W
ay

fo
rm

er

Single model
WTA 1.75 0.51 4.13 1.20 49.92 -11.58
HWTA (Ours) 0.81 0.40 2.24 0.95 -15.54 -49.71 1.1

Ensemble
DE 1.01 0.48 2.74 1.19 -12.81 -21.23 3.3
HT-Ens (Ours) 0.74 0.35 2.06 0.80 -25.80 -47.36 3.3
HLT-Ens (Ours) 0.68 0.33 1.87 0.71 -27.64 -49.78 1.5

Table 6. Performance comparison on Interaction for the Scene-
Transformer and Wayformer backbones. All ensembles have
M = 3 subnetworks and are followed by a KMeans algorithm
to form 6 trajectory clusters from which we take the centroids;
we highlight the best performances in bold. For our method,
we consider α = 1.5 for SceneTransformer and α = 2.0 for
Wayformer. The number of parameters is expressed in millions.

among ensemble members: the random initialization of
the model’s parameters and the shuffling of the batches.
HLT-Ens does not benefit from this last source of stochas-
ticity, yet it has comparable performance. To provide more
insight into the effect on the diversity of this source of
stochasticity in the training of trajectory forecasting mod-
els, we conducted a small experiment on the consistency
of the cluster found by the post-hoc KMeans algorithm on
our ensembles. Fig. 4 presents the similarity matrices for
both DE and HLT-Ens. Each cell represents the rate of two
modes being clusterized in the same cluster by the KMeans
algorithm on the validation set of Argoverse 1. The
clustering appears more consistent for HLT-Ens (i.e., the
similarity matrix is sparser), highlighting the possibility of
clustering only once the modes and applying it without too
much performance loss compared to executing a KMeans
algorithm for each sample.

H. Wayformer and SceneTransformer Exper-
iments

Appendix H presents the performance of our method on
the SceneTransformer and Wayformer backbones trained
on the Interaction dataset. These results are based on
custom re-implementations we developed for both meth-
ods. These preliminary results showcase the ability of our
approach to improve the most confident forecast accuracy
and the quality of the predicted multimodal distribution
compared to the original loss presented in both papers. Our
method applied to Wayformer outperforms its counterpart
on all metrics. Interestingly, HLT-Ens even outperforms
HT-Ens, making it an attractive choice. It only has slightly
more parameters than the classic Wayformer. Concerning
SceneTransformer, we observe a lack of diversity in our
predicted modes. We argue it might be necessary to try out
other values of γ (we used γ = 0.6 here).

I. Additional Qualitative Results
Fig. 5 provides additional trajectory forecasting exam-

ples on the Argoverse 1 dataset. We display predictions
from an AutoBots trained using our new loss HWTA and
a classical AutoBots model. The first thing we observe
is that the predictions from our model are less scattered
than the other. Indeed, they are closer to each other and
the ground truth, which explains why we reached higher
performance on mADE1, mFDE1 and the NLLk metrics.
We also note that the sub-modes belonging to the same
meta-modes are near each other, as announced in the
paper. With this knowledge, we can expect the average of
several sub-modes (i.e., a meta-mode) to be a more robust
prediction, as it might be in higher-density areas. Finally,
we show a failure example, where due to the bad position
of one sub-mode, the meta-mode A is misplaced. We argue
that this issue could occur for likely trajectory candidates
and that one could easily compute the intra-mode distances
to see whether the cluster is coherent. Moreover, adding
more sub-modes per meta-mode should alleviate this issue
as one bad sub-mode will have less effect.



(a) Left turn scenario

(b) Intersection scenario

(c) Another intersection scenario

Figure 5. Qualitative results with AutoBots backbone on Argoverse 1. We compare an AutoBots model trained with its original loss
(K = 6) compared with our HWTA loss (γ = 0.8) with 3 meta-modes (i.e., K⋆ = 3 and K′ = 2).
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