A. Dataset Details
A.1. Distribution

In this analysis, we present the distributions of ground truth
word lengths within our LenCom-EVAL and MARIO-EVAL
datasets. Figure 10 shows that LenCom-EVAL exhibits a higher
proportion of lengthy keywords in its composition.
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Figure 10. Comparison of LenCom-EVAL and MARIO-EVAL Dis-
tributions across Image Subsets by Number of Keywords: LenCom-
EVAL exhibits a higher proportion of lengthy keywords in its

composition.

A.2. Examples from Datasets

Table 4 displays an example from each subset within the
LenCom-EVAL benchmark. In the Aug-MARIO-Hard instance,
we employed the splitting augmentation method to divide the word
”Amazon” into two parts: “Amaz” and “on”. Our RWC subset is
generated using the template “A neon sign that says [Placeholder]”;
in this particular case, the placeholder was substituted with “The
little Luminous in the garden”.

B. Bounding Box Refinement Algorithm

We selected Simulated Annealing (SA) as our bounding box
refinement method based on the empirical findings presented in [4].
The author organized spatio-overlap optimization techniques into
six categories: exhaustive search, greedy algorithms, discrete gradi-
ent descent, gradient approximation using overlap vectors, mathe-
matical programming, and stochastic search, with SA falling under
the stochastic search category. Their experiments demonstrate that
SA offers a favorable balance of speed and quality compared to
other methods, along with the advantage of easy implementation.

C. Experiments
C.1. Baselines

TextDiffuser: Similar to original Text-Diffuser [3] we used the
2 stage network with maximum keywords length of 8. For the
diffusion process we used the provided pretrained check point
of runwayml/stable-diffusion-v1-5 and utilized Hug-
ging Face Diffuser API®. For inference, we used 30 sampling steps
and classifier free guidance with the scale of 7.5. We used a single
NVIDIA RTX A6000 GPU with 4GB VRAM. Inference across all
the datasets we experimented with was completed within 3 hours.
TextDiffuser-2: The TextDiffuser-2 [2] pipeline consists of
two language models: one for converting the input prompt

8https://huggingface.co/docs/diffusers

into a language-format layout and the other for encoding
this layout within the diffusion model to generate images.
As described in the experimental setup, we sample with 50
steps during the inference phase of the pipeline. We use
the pretrained vicuna-7b-v1.5 model checkpoint of
JingyeChen22/textdiffuser2_layout_planner for
layout planning. For the diffusion process, we use the pre-trained
checkpoint of JingyeChen22/textdiffuser2-full-ft.

Diff-Text: For the Diff-Text [36] model, we use the of-
ficial GitHub implementation along with the following pre-
trained models: runwayml/stable-diffusion-v1-5 and
lllyasviel/sd-controlnet-canny. Furthermore, since
the sketch renderer does not support line breaks, we truncate any
text that goes beyond the 512 pixel limit.

AnyText: The AnyText [30] inference pipeline contains a text-
control diffusion pipeline with two primary components: an auxil-
iary latent module and a text embedding module. We use the offi-
cial implementation on GitHub and use the text—generation
mode. Following the experimental setup described in AnyText, we
split each input into a maximum of 5 text lines, with each line hav-
ing no more than 20 characters. Any text exceeding 100 characters
was truncated. This input was then sent to the Glyph Builder, and
the produced templates were fed into the pipeline to generate the
final images with the inscribed text.

C.2. Results for the Overlapped Area of Layout
Generation

In addition to accuracy, we evaluate the overlap area and In-
tersection over Union (IoU) of bounding boxes generated by the
layout generator. A smaller overlapped area or IoU indicates bet-
ter layout generation by the model. From Table 5, we observe
that SA-OcrPaint achieves significant reductions in both metrics.
Specifically, our method improves the overlapped area and IoU by
91.3

C.3. Accuracy on 1/2/4/6/8/10 words subsets of SA-
OcrPaint

We present the OCR accuracy at both the word and character
levels across various subsets. From Figure 11, it’s evident that SA-
OcrPaint outperforms the baseline TextDiffuser notably when there
are two or more keywords, with the improvement becoming more
significant as the number of words increases. Conversely, when
there’s only one keyword, TextDiffuser performs better. In this
scenario, where there’s no overlap of bounding boxes due to a single
bounding box in the layout generation, our SA algorithm doesn’t
exert any influence. However, during the second OCR in-painting
step, multiple iterations actually decrease model performance. A
potential remedy for this issue is to introduce a policy for accepting
either the newly generated image or the previous one. This policy
could be based on OCR word or character accuracy, wherein if the
accuracy of the new image surpasses that of the previous one, it is
accepted; otherwise, it is rejected.



Subset Input Text Prompt

Ground Truth

MARIO-Hard ‘Amazon Cloud Player Amazon Cloud Player’ Music

Amazon Cloud Player Amazon Cloud
Player

Aug-MARIO-Hard  ‘Amaz on Clo ud Player Amazon Cloud Pla yer’ Music

Amaz on Clo ud Player Amazon Cloud
Pla yer

WRC A neon sign that says ‘The little Luminous in the garden’

The little Luminous in the garden

Table 4. Example from each subset in LenCom, the input prompt and the ground truth.

Model Overlapped Area IoU

TextDiffuser 1450 0.41
SA-OcrPaint 189 0.04

Table 5. Comparison of TextDiffuser and SA-OcrPaint in terms
of Overlapped Area and IoU: SA-OcrPaint demonstrates a notable
reduction in the extent of overlapped bounding boxes.
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Figure 11. Compare Accuracy of TextDiffuser and SA-OcrPaint
across image subsets as the number of keywords increases: SA-
OcrPaint outperforms TextDiffuser when keywords number is
euqgal or more than 2.

D. Disscussion on Text Font

For our experiments, we utilized the default font, “Arial.ttf,”
which aligns with the approach employed in prior work such as
TextDiffuser [3]. The choice of this font ensures consistency with
the base model and allows us to focus on evaluating the primary
objectives of our framework. It is worth noting that the integration
of different font families is feasible by updating the model with
the desired font file. However, one limitation of the current setup
is that all words within a particular image are generated using
the same font family. Generating text with mixed fonts across
individual words or characters introduces additional complexities,
including alignment, aesthetic consistency, and legibility, which
require deeper investigation. This aspect represents a promising
direction for future research, as incorporating diverse fonts within
the same image may enhance the realism and applicability of the
generated text in more complex scenarios.
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