
Supplementary material for STRIDE: Single-video based Temporally
Continuous Occlusion Robust 3D Pose Estimation

1. Network Architecture
M contains two key components: 1) a spatial block to

capture the orientation of joints, and 2) a temporal block
to model the temporal dynamics of a joint. The spatial
block refines poses in each frame, while the temporal block
smooths the transitions between frames. We describe these
components below:
Spatial block. This block utilizes Spatial Multi-Head Self-
Attention (S-MHSA) to model relationships among joints
within each pose in the input sequence. Mathematically,
the S-MHSA operation is defined as:
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S denote the query, key, and value projec-

tions for the ith attention head, dk is the key dimension, and
WP

S is the projection parameter matrix. We apply S-MHSA
to features of different time steps in parallel. The output
undergoes further processing, including residual connection
and layer normalization (LayerNorm), followed by a multi-
layer perceptron (MLP).
Temporal block. This block utilizes Temporal Multi-Head
Self-Attention (T-MHSA) to model the relationships be-
tween poses across time steps, thereby enabling the smooth-
ing of the pose trajectories over the sequence. It operates
similarly to S-MHSA but is applied to per-joint temporal
features parallelized over the spatial dimension:
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By attending to temporal relationships, T-MHSA produces
smooth pose transitions over time.
Dual-Stream Spatio-temporal Transformer. We then use
the dual-stream architecture which employs spatial and tem-
poral Multi-Head Self-Attention mechanisms. These mech-
anisms capture intra-frame and inter-frame body joint in-
teractions, necessitating careful consideration of three key
assumptions: both streams model comprehensive spatio-
temporal contexts, each stream specializes in distinct

spatio-temporal aspects, and the fusion dynamically bal-
ances weights based on input characteristics.

2. Implementation Details
We implement the proposed motion encoder DSTformer

with depth N = 5, number of heads h = 8, feature size = 512,
embedding size = 512. For pretraining, we use sequence
length T = 243. The pretrained model could handle differ-
ent input lengths thanks to the transformer-based backbone.
During finetuning, we set the backbone learning rate to be
0.1× of the new layer learning rate.

Setup. We have implemented the proposed model using
PyTorch. For our experiments, we utilized a CentOS ma-
chine equipped with 4 NVIDIA 3090 GPUs, specifically de-
signed for accelerating pretraining tasks. It’s worth noting
that for finetuning and inference processes, a single GPU
typically proves to be more than adequate.

Pretraining. We do large scale pertaining using
AMASS and Training split of Human3.6M. For the imple-
mentation of AMASS [11], we initiate the process by ren-
dering the parameterized human model SMPL+H. Subse-
quently, we extract 3D keypoints using a predefined regres-
sion matrix. The extraction of 3D keypoints from the Hu-
man3.6M dataset is accomplished through camera projec-
tion. Motion clips with a length of T = 243 are sampled for
the 3D mocap data. The input channels are set to Cin = 3,
representing the (x, y, z) coordinate. Data augmentation is
applied through random horizontal flipping.

The entire network undergoes training for a total of 90
epochs, employing a learning rate of 0.0005 and a batch
size of 64, facilitated by the Adam optimizer. The weights
assigned to the loss terms are parameterized by λO = 20.
Additionally, we set the 3D skeleton masking ratio to 15%,
aligning with BERT’s configuration. This involves using
10% frame-level masks and 5% joint-level masks. De-
spite variations in the proportion of these mask types, only
marginal differences are observed.

To ensure the smoothness of the noise and prevent severe
jittering, we initially sample noise z ∈ RTK×J for TK = 27
keyframes. Subsequently, we upsample it to z′ ∈ RT×J

and introduce a small Gaussian noise N (0, 0.0022).
3D Pose Estimation. We conduct training during the
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Figure 1. The figure above, from left to right, illustrates the variation in error values across the x, y, and z coordinates within a single video.
Notably, STRIDE exhibits relatively lower error, particularly in scenarios involving occlusion. Furthermore, for y-coordinate, it is evident
that the error demonstrates a remarkable level of smoothness.

inference stage for a duration of 30 epochs, employing the
following hyperparameters:

• Batch size: 1

• Learning rate: 0.0002

• Weight decay: 0.01

• Learning rate decay: 0.99

The total loss, denoted as

Ltotal = λ1Lmpjp + λ2Lvel + λ3Llim + λ4Lnmpjp,

is comprised of multiple components, each weighted by
specific coefficients. For this configuration, we set the
weights as follows: λ1 = 1, λ2 = 20, λ3 =
200, λ4 = 0.5. These weightings contribute to the over-
all optimization objective, allowing for a fine-tuned balance
during the training process.

3. Temporal Smoothness
The existing metric falls short in capturing temporal

smoothness or assessing errors during occlusion. Addi-
tionally, there’s a likelihood that a model excelling in oc-
cluded scenarios might not significantly impact overall per-
formance if non-occluded cases dominate the results. This
becomes particularly apparent in cases of sporadic temporal
occlusion.

To address this issue and gain deeper insights into pre-
dictions during occlusions, we visualize various errors in
Fig. 1. This plot illustrates how the error in the x, y, and
z coordinates evolves in a video featuring occlusions. No-
tably, other methods demonstrate subpar performance dur-
ing occlusions, with the error in the x and z coordinates
being relatively minimal, exerting less influence on the fi-
nal error. In contrast, the y-coordinate error predominantly
contributes to the overall error, where STRIDE stands out
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Figure 2. Effect of large-scale pre-training. We take 5 random
samples from Occluded Human3.6M and try to align DSTFormer
architecture. We find that when DSTFormner is initialised with
motion-prior weights it converges faster.

by consistently having the least amount of error. The note-
worthy aspect is the sustained and consistent performance
throughout the occluded duration.

4. Additional Qualitative Results

In Fig. 3 we compare our method against a different
state-of-the-art 3D pose estimation method named Pose-
FormerV2 [21]. We observe that STRIDE’s skeleton is best
aligned with the actual ground truth pose, even when there
is significant occlusion.

One trivial way to improve the results of BEDLAM is
by linear interpolation between frames. However, we qual-
itatively found that the interpolation was very smooth and
misses to capture the intricate motion. Our loss optimiza-
tion during inference helps to achieve the best results. In-



(a) OCMotion Image (b) Ground Truth (c) PoseFormerV2 (d) STRIDE (ours)

Figure 3. This figure shows how our method works when tested in natural occlusion cases. The translucent blue color in the second column,
third column, and fourth column represents the ground truth. Blue, red, and green similarly represent Ground Truth, PoseformerV2 and
STRIDE results, respectively.

Figure 4. 3D pose estimation results on Occluded Human3.6M. CycleAdapt (second row) fails to generalize in cases when there is
complete occlusion. STRIDE (third row) produces temporally coherent pose infilling due to test time training. Note that the translucent
red color represents the ground truth poses.

terpolation results are shown in Table 2. 5. Additional Quantitative Results

In our study, we conduct a comparison with the WHAM
model [15], a method that has only recently been intro-



duced. WHAM employs a fully supervised training ap-
proach, benefiting from extensive datasets for its develop-
ment. Notably, our method surpasses WHAM’s perfor-
mance on the Occluded Human3.6M dataset (refer to Ta-
ble 2), demonstrating STRIDE’s enhanced capability in
managing significant occlusions. Additionally, we achieve
results comparable to those of WHAM on the OCMotion
dataset (refer to Table 1). It is important to highlight that the
OCMotion dataset lacks substantial occlusions, which lim-
its the opportunity to showcase STRIDE’s strengths fully.
STRIDE is particularly effective in scenarios with heavy
occlusion, as evidenced by its performance on Occluded
Human3.6M. Further, we also compare with 3DNBF [20],
which was specially introduced to tackle occlusions while
estimating the pose. It is evident from the results that
STRIDE surpasses 3DNBF’s performance (refer to Table 2)
and also highlights the point that STRIDE performs the best
when there are severe occlusions in the scene.

STRIDE is originally proposed to improve the tem-
poral continuity of any existing pose estimation method.
This makes STRIDE agnostic to any existing pose estima-
tion method. Note that in Table 3 even if we use CLIFF,
STRIDE outperforms existing SOTA methods on Occluded
Human3.6.

Method PA-MPJPE Accel Avg

Im
ag

e OOH [19] 55.0 48.6 51.8

PARE [7] 52.0 43.6 47.8

BEDLAM [1] 47.1 49.0 48.0

V
id

eo

PoseFormerV2 [21] 126.3 28.5 77.4

GLAMR [18] 89.9 51.3 70.6

CycleAdapt [14] 74.6 57.5 66.0

ROMP [16] 48.1 57.2 52.6

SPIN† [8] 56.7 47.0 51.8

VIBE† [6] 58.6 44.5 51.5

WHAM [15] 42.4 27.0 34.7

STRIDE (ours) 46.2 47.8 47.0

Table 1. 3D pose estimation results on OCMotion [4]. WHAM
performs better than other methods because it is a supervised
method and has been trained on large amounts of data compared
to STRIDE’s backbone. Hence, it is able to generalize well on the
OCMotion dataset.

6. Extending STRIDE for Mesh Generation
and Recovery

STRIDE is originally proposed to extract the 3D pose
estimation of the Human which is (T, 17, 3) dimensional
vector. where T is the number of frames. Extension of

Method PA-MPJPE MPJPE Accel

Im
ag

e

CLIFF [9] 183.5 100.5 38.4

BEDLAM [1] 179.5 98.9 39.1

BEDLAM Interpolation [1] 64.1 83.3 -

3DNBF [20] 204.3 260.4 39.3

V
id

eo

GLAMR [18] 213.9 380.3 42.3

PoseFormerV2 [21] 193.9 260.2 38.7

CycleAdapt [14] 77.6 132.6 48.7

MotionBERT [23] 76.1 112.8 28.7

WHAM [15] 119.5 237.7 46.8

STRIDE (ours) 59.0 80.7 26.6

Table 2. 3D Pose estimation results on Occluded Human3.6M.
This dataset is crucial as it is the only dataset that has signifi-
cant occlusion. The results underscore that STRIDE surpasses
all state-of-the-art including WHAM with substantial percentage
improvements, affirming its robustness in handling occlusions.

Occluded H36M Human3.6M OCMotion

Method PA-MPJPE MPJPE PA-MPJPE MPJPE PA-MPJPE Accel

CLIFF 183.5 100.5 39.4 62.9 54.2 56.8
STRIDE (CLIFF) 64.8 82.1 40.1 63.2 52.1 54.2

BEDLAM 179.5 98.9 50.9 70.9 47.1 49.0
STRIDE (BEDLAM) 59.0 80.7 50.4 69.7 46.2 47.8

Table 3. Effect of various 3D Pose estimation method on STRIDE.
We observe that we gain similar performance improvement if we
have use any other backbone as well.

STRIDE to mesh recovery is trivial as we can simply train
the DSTformer backbone to produce a sequence of tem-
porally clean (T, 24, 3) output from a sequence of noisy
input SMPL parameters. Here (24, 3) represents the θ
SMPL [10] parameter shape. We can then extract human
mesh using the SMPL parameters using an SMPL head.
For the re-projection of the human mesh onto the image,
we simply use the β and camera parameters predicted by
BEDLAM-HMR/BEDLAM-CLIFF [1] and do linear inter-
polation/extrapolation to incorporate missing camera pre-
dictions.

7. Additional Dataset Details
Human3.6M [5]. An indoor-scene dataset, Human3.6M is
a pivotal benchmark for 3D human pose estimation from
2D images. Following [1], we retain every 1 in 5 frames in
the test split comprising the S9 and S11 sequence. We per-
form experiments on the original publically available Hu-
man3.6M dataset to show that our method achieves compa-
rable performance with other state-of-the-art methods.
OCMotion [4]. OCMotion is a video dataset that extends
the 3DOH50K image dataset [19], incorporating natural
occlusions. The dataset comprises 300K images captured
at 10 FPS, featuring 43 sequences observed from 6 view-



Frame 1 Frame 6 Frame 9 Frame 10 Frame 16 Frame 19 Frame 20 Frame 26 Frame 29

Figure 5. Samples of Occluded Humans3.6M dataset. We add artificial occlusions on Human3.6M dataset that persist both spatially and
temporally, covering the subject up to 100%. Here the person between the Frame 10 to Frame 19 remains occluded.

points. Its annotations for 3D motion include SMPL, 2D
poses, and camera parameters. The sequences {0013, 0015,
0017, 0019} are designated for testing. Our method does
not require supervised training, so we have only used the
test split when performing all experiments.
Occluded Human3.6M. We curate the Occluded Hu-
man3.6M dataset to evaluate our method, specifically de-
signed for assessing human pose estimation under sig-
nificant occlusion, unlike existing datasets such as Hu-
man3.6M, MPI-INF-3DHP [13], and 3DPW [17]. To ac-
complish this, we use random erase occlusions on Hu-
man3.6M videos, completely covering a person up to 100%.
These occlusions persist spatially and temporally for 1.6
seconds within 3.2 seconds of the video. Some samples are
shown in Figure 5.
BRIAR [3]. BRIAR is a large-scale biometric dataset fea-
turing videos of human subjects captured in extremely chal-
lenging conditions. These videos are recorded at varying
distances i.e close range, 100m, 200m, 400m, 500m, and
unmanned aerial vehicles (UAV), with each video lasting
around 90 seconds. Most of the pose estimation methods
fail on this dataset due to the extreme amount of domain
shifts. Additionally, BRIAR lacks ground truth data for
poses, which means evaluations of pose estimation meth-
ods on this dataset can only be qualitative, relying on visual
assessments rather than quantitative metrics.

8. Additional Related Works
2D-3D human pose lifting. Modern 3D human pose esti-
mation encounters significant challenges in generalization
due to limited labeled data for real-world applications. [12]
addressed this issue by breaking down the problem into 2D
pose estimation and 2D to 3D lifting. Subsequently, [2] im-
proved on this by including self-supervised geometric reg-
ularization, by synthetic data usage [24], spatio-temporal
transformers [22], and frequency domain analysis [21]. [23]
achieved state-of-the-art results by modelling motion priors
from a sequence of 2D poses. Although these works per-
form well up to a certain degree, they suffer from two prob-
lems: depth ambiguity of 2D human poses, inaccurate 3D
human poses if the initial 2D human poses are noisy. In
contrast, we focus on 3D pose estimation in a video-based
setting and does not involve any 2D-3D pose lifting.
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