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1. Dataset Descriptions

Our approach leverages labeled synthetic data and unla-
beled real data, as shown in Tab. 1. We discard the labels
of real datasets to align with the experiments. The ”Train.”
data we report is slightly different from [1, 2] because we
use raw images (with discarded labels).

We present some data from the source domain (syn-
thetic) in Fig. 1. Compared to the target domain in Fig. 7,
a significant domain gap appears between the two domains,
affecting the performance of the STR models.

2. Domain Discriminator (DD) details

2.1. Training detail (stage 1)

Domain Discriminator (DD) employs a binary classifier
f(x;ϕ) with a feature extractor from the baseline model
combined with a fully connected layer at the last layer. DD
is trained with raw images from S (assigned as class 0) and
T (assigned as class 1).

We use focal loss [10] to optimize the learnable param-
eter to improve DD’s accuracy in classifying challenging
cases and addressing data imbalance issues (e.g. class 0 with
16 million samples and class 1 with 2 million data samples):

L(ϕ) = − 1

|S|
∑
xS∈S

(σ(f(xS ;ϕ)))γ log(1− σ(f(xS ;ϕ)))

− 1

|T |
∑

xT∈T

(1− σ(f(xT ;ϕ)))γ log(σ(f(xT , ϕ)))

(1)
where σ is the sigmoid function. Then, we assign di =
σ(f(xi;ϕ)), di ∈ (0, 1) to a data point xT

i . The focusing
hyper-parameter γ smoothly adjusts the rate at which easy
examples are down-weighted.
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Figure 1. Examples of synthetic data. The samples are extracted
from the MJ and ST datasets.



Table 1. Summary of dataset usage. Numbers indicate how many samples were used from each dataset. ”t” refers to splits that were
repurposed as training data. ”*” note that we use the Union14M-Benchmark, which comprises: Artistic, Contextless, Curve, and General.

Dataset Conf. Year # of word boxes

Train. Val. Eval.
Synthetic datasets

MJ [5] NIPSW 2014 7,224,586 802,731t 891,924t

ST [4] CVPR 2016 6,975,301 - -
Real datasets

IIIT5k [12] BMVC 2012 2,000 - 3,000
SVT [21] ICCV 2011 257 - 647
IC13 [8] ICDAR 2013 848 - 1,015
IC15 [7] ICDAR 2015 4,468 - 2,077
SVTP [14] ICCV 2013 - - 645
CUTE [15] ESWA 2014 - - 288
COCO [19] arXiv 2016 59,820 13,415 9,825
Uber [23] CVPRW 2017 91,978 36,136 80,418
ArT [3] ICDAR 2019 32,349 - 35,149
ReCTS [22] ICDAR 2019 25,328 - 2,592
LSVT [18] ICDAR 2019 43,244 - -
MLT19 [13] ICDAR 2019 56,937 - -
RCTW17 [16] ICDAR 2017 10,509 - -
TextOCR [17] ECCV 2020 714,770 107,722 -
OpenVINO [9] ACML 2021 1,914,425 158,819 -
Union14M-Benchmark* [6] ICCV 2023 - - 403,379

2.2. Ablation Study on DD (stage 2)

We experimented with the method StrDADD using vari-
ous settings for the hyper-parameter n. As shown in Fig. 2,
Fig. 4, and Fig. 5, in most cases, StrDAHDGE demonstrates
superior performance compared to StrDADD. Moreover, as
hyper-parameter n is too high, the effectiveness of StrDA
decreases. Therefore, a reasonable choice of n is crucial.

3. Qualitative Results
In Fig. 6, we visualize the performance of the

STR models during the progressive self-training process.
StrDAHDGE shows improved performance, and the stabil-
ity of the STR models is reinforced throughout each round
of progressive self-training.

In Fig. 3, we observe the predictions of the TRBA-
StrDAHDGE model in some cases from benchmark datasets.
After progressive self-training, the TRBA model gradually
improves its accuracy compared to the previous round.

To visually observe how StrDA operates, we sampled
some cases from each subset after partitioning. As illus-
trated in Fig. 7, the difficulty of challenging cases increases
gradually through each round. Therefore, when applying
progressive self-training to the TRBA model, the recognizer
can adapt progressively across each subset from the source
to the target domain. StrDAHDGE also demonstrates supe-
rior performance in generating high-quality pseudo-labels
compared to vanilla self-training ST.
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Figure 2. Ablation study on the hyper-parameter n for CRNN-
StrDAHDGE and CRNN-StrDADD.

4. Limitations and Future Work
A limitation of the proposed method is its dependency

on the available target domain data, which is inevitably in-
sufficient to fully cover the target domain. Consequently, if
a large portion of the data shares similar patterns, the out-
of-distribution (OOD) evaluation will primarily reflect the
OOD performance of that specific group. Recently, there
has been growing interest in OOD evaluation based on vi-
sion foundation models (VFMs) [11, 20]. Utilizing VFMs
could provide more generalized output scores.

Moreover, grouping subsets with equal sizes does not
accurately reflect the distribution of the domain gap, high-
lighting the need for a more comprehensive global solution.
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Figure 3. Predictions of TRBA-StrDAHDGE model on some cases from the benchmark dataset after each round of self-training. It can be
seen that the model gradually improves its accuracy compared to the previous round. Misclassified characters are highlighted in red.
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Figure 4. Ablation study on the hyper-parameter n for TRBA-
StrDAHDGE and TRBA-StrDADD.
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Figure 5. Ablation study on the hyper-parameter n for ABINet-
StrDAHDGE and ABINet-StrDADD.
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Figure 6. The stability of the STR models throughout the progres-
sive self-training process. It can be observed that the accuracy of the
TRBA model steadily increases across rounds.
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Figure 7. The Stratified Domain Adaptation (StrDAHDGE) approach partitions the data from the target domain into five distinct subsets,
with the disparity across domains gradually increasing, as shown in the image. The difficulty of challenging cases (curved or perspective
texts, occluded texts, texts in low-resolution images, and texts written in difficult fonts) increases progressively across these subsets. The
subsets are then subjected to self-training in sequential rounds. We observe the pseudo-labels generated by the TRBA model for each
subset at the beginning of the self-training process. In the case of vanilla self-training (ST), all cases are predicted simultaneously by the
source-trained (baseline) model. In StrDAHDGE, the model predicts pseudo-labels for the target domain in round m using the TRBA
model after self-training in round m−1. The pseudo-labels generated by ST are prone to noise (red characters) as the extent of the domain
gap escalates. On the other hand, StrDAHDGE produces pseudo-labels with higher quality. This contributes to making the progressive
self-training process much more effective. The STR model used for the example is TRBA.
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