
[Supplementary Materials]
Beta Sampling is All You Need: Efficient Image Generation Strategy for

Diffusion Models using Stepwise Spectral Analysis

1. Experiment Details and Additional Step
Analysis of ADM-G

For our experiments with ADM-G on ImageNet 64
datasets, we utilized the official codebase 1 and the pub-
licly released checkpoint. We generated 50,000 images and
employed pre-computed sample batches from the reference
datasets available in the ADM codebase to calculate the FID
scores presented in Tables 1 and 3 of our main manuscript.

Figure 10 illustrates the cumulative histogram of occur-
rence numbers for 20 steps, following the same procedure
outlined in Figure 8 of the main manuscript. To enhance
the visibility of the histogram, the time steps were sampled
50 times. Notably, the histogram for AutoDiffusion exhib-
ited characteristics similar to a Beta distribution, consistent
with our observations for 10 and 15 steps. This consistency
across different step numbers further supports the robust-
ness of our proposed Beta Sampling approach.

2. Experiment Details and Step Analysis of Sta-
ble Diffusion

In our experiments, we employed the official codebase 2

and the “sd-v1-4.ckpt” checkpoint. For FID and IS mea-
surements, we used the validation set of the COCO 2014
dataset. Unless otherwise specified, the Stable Diffusion ex-
periments were conducted using the PLMS solver.

Figure 11 shows the Stable Diffusion version of the cu-
mulative histogram of the occurrence number of time steps
plot, which was originally presented in Fig. 8 of the main
manuscript. We conducted 50 sampling iterations for each
time step and observed that Beta Sampling in Stable Dif-
fusion exhibits trends similar to AutoDiffusion, although
less pronounced than in ADM-G. This difference in inten-
sity is hypothesized to be the underlying cause of the per-
formance difference observed in Stable Diffusion. Despite
these intensity variations, the consistent emergence of Beta-
like patterns across different architectures suggests the fun-
damental validity of our sampling approach.

1https://github.com/openai/guided-diffusion
2https://github.com/CompVis/stable-diffusion
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Figure 10. A cumulative histogram of occurrence number of time
steps sampled by AutoDiffusion on ADM-G with 20 time steps.
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(a) 4 steps.
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(b) 6 steps.
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(c) 10 steps.
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Figure 11. A cumulative histogram of occurrence number of time
steps sampled by AutoDiffusion on Stable Diffusion with various
number of time steps.
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Figure 12. Examples generated by ADM-G on ImageNet 64×64 with various sampling strategies.
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Figure 13. Examples generated by Stable Diffusion with various sampling strategies. The text prompts used for generation are “A lady
sitting at a table with food and drink, holding up two fingers”, “A cat watching TV while laying in bed”, “A kitchen with a tile floor and a
metallic sink” and “The transit train stretches down the track under the power lines”.



3. Additional Examples Generated by ADM-G

Figure 12 presents generated samples from ADM-G us-
ing identical initial noise across various sampling strategies.
Our comprehensive analysis reveals distinct performance
patterns across different step counts. At 4 steps, Beta Sam-
pling demonstrates markedly superior results compared to
uniform sampling, which exhibits significant difficulties in
maintaining structural coherence and image fidelity. While
Beta Sampling at this step count does not fully match Au-
toDiffusion’s clarity and detail preservation, it achieves a
favorable balance between quality and computational effi-
ciency. At 6 and 10 steps, both Beta Sampling and AutoD-
iffusion produce notably sharper and more detailed images
compared to uniform sampling, with Beta Sampling achiev-
ing particularly impressive results in maintaining global
structure and local details. The computational advantage of
Beta Sampling becomes especially apparent when consid-
ering AutoDiffusion’s intensive search process, which re-
quires substantial additional resources without proportional
quality improvements.

4. Additional Examples Generated by Stable
Diffusion

The supplementary results for Stable Diffusion, as
shown in Fig. 13, provide valuable insights into the per-
formance characteristics of different sampling strategies
across various step counts. At 4 and 6 steps, uniform sam-
pling demonstrates severe limitations, manifesting as sig-
nificant structural defects, inconsistent object boundaries,
and poor color reproduction that substantially impact the
visual quality of the generated images. Beta Sampling suc-
cessfully addresses many of these shortcomings, showing
marked improvements in structural coherence and color fi-
delity, though it does not completely match the quality level
achieved by AutoDiffusion when working with larger mod-
els that benefit from its more exhaustive search process.
As we increase to 10 and 20 steps, Beta Sampling demon-
strates particularly impressive performance, achieving sam-
ple quality that is virtually indistinguishable from AutoD-
iffusion while maintaining its computational efficiency ad-
vantage. This quality parity at higher step counts is espe-
cially noteworthy given the substantial computational sav-
ings offered by Beta Sampling. Throughout our experiments
across all step counts, Beta Sampling consistently emerges
as a highly competitive approach, delivering superior im-
age quality compared to uniform sampling while avoid-
ing the computational overhead associated with AutoDif-
fusion’s search-based methodology. These results strongly
suggest that Beta Sampling represents an optimal balance
between generation quality and computational efficiency in
practical applications.
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Figure 14. Probability Density Function (PDF) and Cumulative
Distribution Function (CDF) of uniform and Beta distributions.

5. Beta Distribution by Different Parameters

Figure 14 illustrates the Probability Density Functions
(PDFs) and Cumulative Distribution Functions (CDFs) of
uniform and various Beta distributions. The Beta distri-
bution is characterized by two hyperparameters, α and β,
which determine the shape of the distribution. When α > β,
the distribution skews to the right, meaning that sampling
the denoising process based on this distribution will focus
on the changes in low-frequency components during the
early stages. Conversely, if α < β, the distribution skews
to the left, concentrating the denoising process on high-
frequency component changes in the later stages. Finally,
when α = β, the Beta distribution forms a shape with peaks
at both ends, which means that sampling according to this
distribution will evenly concentrate on both low-frequency
changes in the early stages and high-frequency changes in
the later stages. In our proposed method, we use a Beta dis-
tribution where α = β to ensure a balanced focus on both
low-frequency and high-frequency changes throughout the
denoising process. This approach ensures that the denoising
process effectively captures critical changes at both the be-
ginning and end stages, leading to more efficient and high-
quality image generation.

6. Ablation Study on Stable Diffusion

Figure 15 demonstrates the impact of the hyperparame-
ter α = β on FID and IS performance in Stable Diffusion,
similar to Fig. 7 in the main manuscript. When α = β = 1,
the distribution is uniform; as these values decrease, em-
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Figure 15. FID (↓) and IS (↑) scores for Stable Diffusion with Beta
Sampling Beta(α, β) of various hyperparameter α = β and vari-
ous time steps.

phasis on the middle stages is reduced. The observed per-
formance shifts in FID and IS as the hyperparameter devi-
ates from the uniform distribution demonstrate the efficacy
of Beta Sampling. The optimal parameter for maximizing
FID and IS performance varied with the number of sampled
steps. To achieve overall performance enhancement, we set
α = β = 0.6 for Stable Diffusion.

7. Additional Experiments on Stable Diffusion
with DPM Solver

In Tab. 5, we present additional experiments on Stable
Diffusion using the DPM solver, which supports various
skip types. We tested two popular skip types as well as uni-
form skip types, and found that the Beta Sampling param-
eters α = 0.5 and β = 0.9 work effectively for the DPM
solver. The premise of Beta Sampling is to primarily sample
steps at both ends of the process, where significant changes
are more likely to occur, rather than the middle portion. The
relative emphasis on the initial and latter parts can be ad-
justed using the weights of α and β. By applying greater
weighting to the latter part, as derived from previous re-
search, the effectiveness of Beta Sampling can be further
enhanced.

Steps Sampling Strategies FID (↓) IS (↑)

Uniform 23.19 21.59
LogSNR 37.96 17.36

4 Time quadratic 29.98 19.50
AutoDiffusion 18.53 24.26
Ours (Beta) 27.34 19.80

Uniform 17.76 24.73
LogSNR 17.08 23.86

6 Time quadratic 16.25 24.19
AutoDiffusion 16.15 24.65
Ours (Beta) 15.83 24.53

Uniform 16.20 26.35
LogSNR 13.98 26.88

10 Time quadratic 13.79 26.60
AutoDiffusion 12.61 26.69
Ours (Beta) 13.65 27.10

Uniform 14.39 27.35
LogSNR 14.73 27.49

20 Time quadratic 13.99 27.51
AutoDiffusion 13.49 26.43
Ours (Beta) 14.13 27.67

Table 5. FID (↓) and IS (↑) scores for Stable Diffusion with DPM
Solver across various number of time steps and sampling strate-
gies. In this table, Beta Sampling parameters are set to α = 0.5
and β = 0.9. Bold indicates the best performance values, while
italics mark the second-best.
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Figure 16. Sampled step distribution of Stable Diffusion with
DPM solver. Beta Sampling reduces the wide gap in the early
stage(right side) while maintaining step density in the later
stage(left side).
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