
Supplementary Material for
Defending Against Repetitive Backdoor Attacks on Semi-supervised Learning

through Lens of Rate-Distortion-Perception Trade-off

The content of Supplementary Material is summarized
as follows: 1) In Sec. A, we discuss the details of SSL al-
gorithms used in our work; 2) In Sec. B, we state the imple-
mentation and training details we used in the experiment
in terms of datasets, hyper-parameters, and model archi-
tectures to ensure that our method can be reproduced; 3)
In Sec. C, we first recall the rate-distortion theory. Then,
we present the rate-distortion-perception (RDP) trade-offs
from theoretical derivation. Last, we discuss the justifica-
tion that repetitive trigger patterns are ineffective.

A. SSL Algorithms

We conducted the main experiments using five state-of-
the-art SSL algorithms, briefly summarized as follows.

(a) MixMatch [2] creates various weakly augmented
versions of each unlabeled sample. It then calculates the
outputs of the current model for these versions and sharp-
ens the average prediction by raising all its probabilities be-
fore normalization. This refined prediction acts as the la-
bel for the unlabeled sample. In addition, MixMatch em-
ploys mixup regularization on all training data and trains
the model using cross-entropy loss.

(b) ReMixMatch [1] replaces weak data augmentation
in MixMatch with AutoAugment and enhances consistency
regularization through augmentation anchoring. This tech-
nique involves using predictions made on a weakly aug-
mented version of an unlabeled sample as the target predic-
tion for a strongly augmented version of the same sample.
Additionally, it employs distribution alignment, which nor-
malizes the new model predictions on unlabeled data using
the running average of model predictions on unlabeled data,
significantly enhancing the resulting model’s performance.

(c) Unsupervised data augmentation (UDA) [14] ex-
hibits superior performance on SSL with the benefit of
strong data augmentations, such as RandAugment, instead
of weak data augmentations used in MixMatch. Specifi-
cally, RandAugment randomly chooses a few powerful aug-
mentations to improve the generalization and robustness of
the model.

(d) FixMatch [11] combines consistency regulariza-

tion and pseudo-labeling while simplifying the complex
ReMixmatch algorithms. In FixMatch, weak augmenta-
tion follows a standard flip-and-shift strategy, randomly
flipping images horizontally with a given probability. For
strong augmentation, RandAugment and CTAugment are
employed. Furthermore, Cutout is followed after these
above operations.

(e) FlexMatch [18] presents a curriculum pseudo-
labeling (CPL) approach, which flexibly sets the threshold
of pseudo-labels in different categories in each training iter-
ation. Then, according to the model’s learning status, Flex-
Match selects more informative unlabeled data and their
pseudo-labels.

B. Experimental Details

B.1. Datasets and DNNs

We list the detailed dataset and model architecture used
in our experiments, as summarized in Table 5, which shows
the number of classes in each dataset alongside the number
of training and test data. Compared to CIFAR10, SVHN is
designed for recognizing street-view house numbers and is
not class-balanced. STL10 is a 10-class classification task
specially designed for semi-supervised learning research.
Besides, we use WideResNet [16] as model architecture in
our experiments.

B.2. Training size of Labeled data

Table 6 shows that different sizes of labeled data depend
on the algorithm in our experiments. Even when there is
little labeled training data (i.e., 100 samples for CIFAR10),
UPure still effectively alleviates backdoor effects and main-
tains model accuracy.

B.3. Training Settings

Following the training settings in [13], we adopted an
SGD optimizer with a momentum of 0.9, a weight decay of
1 × 10−3, layer decay of 1, a crop ratio of 0.875, and an
initial learning rate of 3× 10−2 in our experiments. With a
batch size of 64, we trained the WideResNet-28-2 model for
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Table 5. Statistics of datasets used in our experiments

Dataset Input size Classes Unlabeled Training data Test data Model

CIFAR10 3× 32× 32 10 50000 10000 WideResNet-28-2
SVHN 3× 32× 32 10 73257 26032 WideResNet-28-2
STL10 3× 96× 96 10 100000 1000 WideResNet-28-2
CIFAR100 3× 32× 32 100 50000 10000 WideResNet-28-8

Table 6. Sizes of labeled data for training a model across different
SSL algorithms.

Dataset Algorithm

MixMatch ReMixMatch UDA FixMatch FlexMatch

CIFAR10 4000 100 100 100 100
SVHN 250 250 100 100 100
STL10 3000 1000 1000 1000 1000
CIFAR100 10000 2500 2500 2500 2500

200, 000 iterations, as shown in Table 5. Note that for CI-
FAR100, we trained the WideResNet-28-8 model. All the
other settings in SSL algorithms are the same as the original
configurations in the USB package [13]. Furthermore, we
executed the experiments with a single NVIDIA RTX3090
GPU. Nevertheless, SSL is still cost-expensive for compu-
tation. For instance, in our experiments, the FixMatch algo-
rithm requires approximately 16 hours to complete 200, 000
iterations on CIFAR10, whereas, for MixMatch and ReMix-
Match, each takes about 6 hours. Training for the same
number of iterations on CIFAR100 using FixMatch extends
to 3.5 days, leading us to exclude experiments with UDA
and FlexMatch on CIFAR100.

B.4. UPure algorithms

Our training procedure is described in Algorithm 1.
Specifically, UPure allows a defender to purify the unla-
beled training data for SSL in the frequency domain using
three strategies. This approach emphasizes preprocessing
data before training, rather than identifying backdoor sam-
ples within the model.

B.5. Details of Backdoor Defense

We evaluate our experiments using four post-processing
and one in-processing backdoor defenses for comparison,
briefly summarized as follows.

(a) Fine-tuning is a common baseline to alleviate per-
nicious behavior on the backdoored model using additional
clean labeled data. In our experiments, we utilize the la-
beled training data of SSL algorithm for finetune.

(b) Fine-pruning [8] first prunes the inactivated neurons
of the last layer by benign data and then finetunes the model
to prevent the activation of backdoors.

(c) Neural Attention Distillation (NAD) [7] fine-tunes
a teacher model on a subset of benign data and distills the

Algorithm 1: Training of UPure

1 Input: Training data Dtrain = Dℓ ∪Du, an SSL
learning algorithm Assℓ, a loss function Lssℓ, a
DCT function Tdct and an inverse DCT Tidct, three
strategies S = {S1, S2, S3}, where S1 is “Turn to
zero,” S2 is “Replace from other,” and S3 is “Add
perturbation,” and a predefined region τ × τ for
perturbation.

2 Output: Clean ModelM∗.
3 /* Step 0: Pick a strategy */

4 S⋆ ← S
5 /* Du is a unlabeled dataset */

6 for img ∈ Du do
7 Du = Du\{img} /* remove image from Du

*/

8 /* Step 1: Transform to DCT spectrum */

9 spectrum = Tdct(img)
10 /* Step 2: Apply UPure */

11 if S∗ == S1 then
12 spectrum[−τ :,−τ :] = 0

13 else if S∗ == S2 then
14 imgℓ ∼ Dℓ /* randomly select an

image from Dℓ */

15 spectrumℓ = Tdct(imgℓ)
16 spectrum[−τ :,−τ :] = 0
17 spectrum[−τ :,−τ :] += spectrumℓ

18 else if S∗ == S3 then
19 η ∼ N (0, σ2I) /* sample a noise */

20 spectrum[−τ :,−τ :] += η

21 /* Step 3: Inverse transform to pixel

domain */

22 img = Tidct(spectrum)
23 Apply cutout operation on img
24 Du = Du ∪ {img} /* place image back

into Du */

25 /* Adopt an SSL algorithm to train a model

M∗
*/

26 Randomly initialize a modelM
27 M∗=Assℓ(Dtrain,Lssℓ,M) return ModelM∗

knowledge of the fine-tuned model into backdoored model



for purification.
(d) Backdoor Adversarial Unlearning (I-BAU) [17]

purifies the backdoored model by using an implicit hyper-
gradient, which facilitates the model convergence and the
generalizability of robustness given a small number of clean
data.

(e) Detection-and-Purification (DePuD) [15] utilizes
GradCam to detect suspicious region (i.e., backdoor trig-
gers) in images. According to the model’s attention, the pu-
rification operation employs differential privacy to alleviate
the effects of poisoned images.

B.6. Visualization results of UPure
We present visualization results of UPure in Fig. 7, com-

paring clean and backdoored samples with purified samples
obtained from our three strategies. We utilize a repetitive
backdoor attack in our work, as detailed in [10], with pixel
intensity, width, and gap set to 30, 1, and 1, respectively.
As can be seen from Fig. 7, the samples generated from
“Turn to zero” and “Replace from others” are blurry while
the “Add perturbation” strategy performs minimal distur-
bance on the backdoored samples, which is sharper than the
other two. This indicates that “Add perturbation” is better
than the other two to maintain the original fidelity of im-
ages. Note that the quantitative results of UPure are shown
in Tab. 7.

Table 7. Quantitative results with our three strategies on CIFAR10.

Strategy CIFAR10

PSNR SSIM

Turn to zero 33.03 0.9618±.075
Replace from other 30.65 0.9461±.088
Add perturbation 45.43 0.9969±.012

B.7. More experiment results

B.7.1 Non-poisoned dataset applied UPure

Since UPure can be viewed as a form of data augmenta-
tion, we further train a model using UPure on a clean train-
ing dataset. For example, with CIFAR-10 as the training
set, MixMatch and FlexMatch attain high BA, close to their
original performance, as shown in Tab. 8. We find that
ReMixMatch is more susceptible to high-frequency com-
ponent perturbations, resulting in a significant decrease in
BA. This observation implies that modern SSL algorithms
can adapt UPure to protect unlabeled data and be robust to
backdoor attacks in SSL scenarios.

B.7.2 Non-targeted attacks

Non-targeted attacks refer to the accuracy of classifying
clean and trigger inputs based on a trained model. As the

Figure 7. Visualization results on CIFAR10. (From Left to Right)
The first and second columns display the clean and backdoored
samples, respectively. The third, fourth, and fifth columns show
purified samples obtained from using “Turn to Zero,” “Replace
from others,” and “Add Perturbation” strategies of UPure, respec-
tively.

Table 8. Evaluation on clean CIFAR10 dataset applied UPure.

MixMatch ReMixMatch UDA FixMatch FlexMatch

BA 89.31% 77.82% 88.24% 87.96% 94.18%

ASR 0.21% 1.85% 0.34% 0.33% 0.26%

clean and poisoned datasets tend to have different class dis-
tributions, we consider non-targeted attacks and observe the
model’s accuracy drop to measure the attack effectiveness if
the trigger is input. Tab. 9 shows the purified model’s accu-
racy in classifying clean and trigger inputs. More precisely,
we find that even if the validation set does not contain the
target class, the trigger inputs tend to be misclassified to cer-
tain classes (e.g., “bird”, “ship”, and “airplane” in the test
set). We conduct five SSL algorithms trained on CIFAR10
that are considered in Tab. 9. The purified model trained
using FixMatch achieves 89.28% and 89.70% accuracy on
clean and trigger inputs, respectively. However, the non-



targeted BA of UDA algorithms drops more than the other
four algorithms.

Table 9. Evaluation against non-targeted attacks on CIFAR10.

MixMatch RemMixMatch UDA FixMatch FlexMatch

BA 87.85% 87.22% 93.59% 89.28% 94.27%
Non-target BA 84.47% 83.73% 77.47% 89.70% 92.14%

B.7.3 Impact of different perturbation area sizes.

We evaluate the impact of different perturbation area sizes,
τ × τ , in terms of BA and ASR on UPure in Fig. 9, where
τ ∈ {4, 8, 16, 24}. We find that a larger distortion region
(e.g., 24 × 24) in the DCT spectrum sacrifices a little BA
(i.e., a decrease of 2.33% in BA) but preserves a better ASR
(i.e., 0%). Fig. 9 also indicates that a small perturbation
region in the high-frequency component is not enough to
remove the backdoors. To better compromise between BA
and ASR, we choose an appropriate size (i.e., τ = 16) in
Sec. 4 for comparisons.

B.7.4 Impacts on poisoning rate of unlabeled data.

Fig. 8 displays the performance of UPure under different
poisoning rates of unlabeled data. Specifically, we vary the
poisoning rates, i.e., 0.15%, 0.2%, 0.3%, 0.4%, and 0.5%.
Regardless of the poisoning rates, UPure can suppress the
occurrence of backdoors in terms of nearly zero ASRs and
no significant drops in BA. This implies that UPure suc-
cessfully breaks the association between the backdoor and
target class with minimal changes to BA. Due to resource
constraints, we perform these experiments only for a subset
of combinations from Sec. 4.

Figure 8. Poisoning
rate vs. BA/ASR.

Figure 9. Different sizes of perturbation
regions vs. BA/ASR.

B.8. Comparison with pre-processing methods

We compare UPure with three filter-based data pre-
processing methods (i.e., Gaussian Filter, Bilateral Fil-
ter [12], and Median Filter). We preprocess the unlabeled
training data with these filters before feeding them into the
model. From Tab. 10, we observe that Gaussian Filter can
be effective in terms of lowering ASR across CIFAR10 and

SVHN. However, it also significantly degenerates the BA
performance in CIFAR10. Bilateral Filter does not elimi-
nate the backdoor effects in both datasets. Median Filter
reduces BA the most among other methods. UPure is more
effective at resisting backdoor attacks than other methods,
showing only a minor decrease in BA and a significantly
low ASR.

Table 10. Results on filter-based data pre-processing methods.

Defense CIFAR10 SVHN

BA ASR BA ↓ BA ASR BA ↓
No defense 92.80 97.54 - 97.61 98.76 -

Gaussian Filter 64.79 1.42 28.01 96.40 2.37 1.21
Bilateral Filter 88.16 99.15 4.64 97.43 99.84 0.18
Median Filter 42.32 1.12 50.48 90.83 96.21 6.78
UPure 91.05 0.00 1.75 96.49 0.00 1.12

C. Theory Details

C.1. Rate-Distortion Theory

Rate-distortion theory analyzes the fundamental trade-
off between the rate used for representing samples from a
data source X ∼ pX , and the expected distortion incurred
in decoding those samples from their compressed represen-
tations. Formally, the relation between the input X and out-
put X̂ of an encoder-decoder pair, is a (possibly stochastic)
mapping defined by some conditional distribution pX̂|X .
The expected distortion of the decoded signals is thus de-
fined as

E[∆(X, X̂)], (6)

where the expectation is w.r.t. the joint distribution pX,X̂ =

pX̂|XpX , and ∆ : X × X̂ → R+ is any full-reference dis-
tortion measure such that ∆(x, x̂) = 0 if and only if x = x̂.

A key result in rate-distortion theory states that for an
i.i.d. source X , if the expected distortion is bounded by D,
then the lowest achievable rate R is characterized by the
(information) rate-distortion function

R(D) = min
pX̂|X

I(X, X̂) s.t. E[∆(X, X̂)] ≤ D, (7)

where I denotes mutual information [5]. Closed-form
expressions for the rate-distortion function R(D) are known
for only a few source distributions and under simple dis-
tortion measures (e.g., squared error or Hamming dis-
tance). However several general properties of this func-
tion are known, including that it is always monotonic, non-
increasing, and convex.



C.2. The Rate-Distortion-Perception Trade-offs

In this section, we introduce the RDP function and its
solution for Gaussian sources. While there are various so-
lutions under different source conditions, we focus on the
Gaussian version due to its simplification of mathematical
treatment, particularly under mean squared error (MSE) dis-
tortion. This allows us to conduct a theoretical analysis of
the universal RDP representation.

(a) R(D) under various P (b) Lossy compression

Figure 10. Rate-Distortion-Perception functions and lossy com-
pression scheme. (a) The curve is computed from Eq. (8) in The-
orem 2. Note that these curves represent the lower bound, with all
points above them being considered feasible solutions.

Theorem 2. [19] For a scalar Gaussian source X ∼
N (µX , σ2

X), the information rate-distortion-perception
function under squared error distortion and squared
Wasserstein-2 distance is attained by some X̂ jointly Gaus-
sian with X and is given by
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As shown in Fig. 10a, we can see that under the same
distortion, the smaller the P is, the larger the rate R is. A
source signal X ∼ pX is mapped into a coded sequence by
an encoder and back into an estimated signal X̂ by the de-
coder. Through this concept of RDP, we aim to satisfy three
properties in our approach: (i) if the coded sequence has
low rate, it implies that more repetitive trigger patterns are
eliminated; (ii) the reconstruction X̂ is similar to the source
X on average (low distortion), which indicates that even the
clean data is reconstructed well; (iii) the distribution pX̂ is
similar to pX so that decoded signals are perceived as gen-
uine source signals (good perceptual quality), which means
that the model can still learn the original distribution well
(e.g., high classification accuracy).

In addition, we also recall the concept of lossy compres-
sion, including an encoder, a decoder, and a quantizer, as
depicted in Fig. 10b. The input and output signals follow
a predefined distribution. In short, the lossy compression
scheme can be viewed as a conditional probability distribu-
tion that can be analyzed in a mathematical treatment. For
further details, please refer to the previous works [3,4,9,19].

C.3. Analysis of Theorem 1.

Since the common SSL algorithms in Sec. A adapt
cutout operation as strong data augmentation on unlabeled
training data, we devise Lemma 1 to explain the failure of
a single trigger if any area α of the trigger intersects with
the cutout region. We further present Lemma 2 to discuss
how UPure can resist repetitive trigger patterns by perturb-
ing high-frequency components. Their proofs are presented
below.

C.3.1 Proof of Lemma 1.

Let psinglef denote the failure probability of a single trig-
ger when a randomly positioned cutout region intersects it.
It can be observed that psinglef reaches its minimum value
when the trigger is placed at any corner of the image. This
phenomenon can be attributed to the geometric constraints
imposed by the image boundaries, which limit the spatial
configurations available for the cutout region to intersect the
triggers positioned at a corner.

Without loss of generality, we assume the trigger pattern
is at the bottom-left corner of the image, where the coordi-
nate is O = (0, 0). Let the position of bottom-left corner
of the cutout region be (w, h), as shown in Fig. 11. Under
the constraint of minimal coverage area α that makes the
trigger invalid, we can obtain the equation

(Wt − w)(Ht − h) = α.

Figure 11. Example of
cutout operation intersects
with a trigger.

Figure 12. Example of lat-
tice points under a hyper-
bolic.

With α being a constant, we can derive h and w as fol-
lows:

1. Solving for h, we obtain:

h = Ht −
α

(Wt − w)
.

2. Solving for w, we find:

w = Wt −
α

(Ht − h)
.

Let us define a function Φ(w) such that:

Φ(w) = Ht −
α

(Wt − w)
.



Analyzing the roots of Φ(w), specifically when Φ(w) =
0, yields:

Ht =
α

(Wt − w)
⇒ w = Wt −

α

Ht
.

Additionally, evaluating Φ(w) at w = 0 gives:

Φ(0) = Ht −
α

Wt
.

Given the function Φ(w) = Ht − α
(Wt−w) (e.g., the blue

curve in Fig. 12), we aim to compute the number of integer
solutions under the curve defined by Φ(w), which means
every (w, h) makes overlapping region Areaoverlap ≥ α.
The number of feasible configurations of (w, h), in terms of
the sum of integer solutions, can be calculated as follows:

#config =

⌊Wt− α
Ht
⌋∑

w=0

[⌊Φ(w)⌋+ 1] . (9)

Finally, the probability that the intersection Areaoverlap
of the cutout region and trigger region is greater than α is:

psinglef ≥ Pr
(
Areaoverlap ≥ α

)
=

∑⌊Wt− α
Ht
⌋

w=0 [⌊Φ(w)⌋+1]
(H−Hc+1)(W−Wc+1) ,

where the denominator (H − Hc + 1)(W −Wc + 1) rep-
resents the total number of distinct configurations in which
the cutout region can manifest.
Remark. In Fig. 11, we illustrate the movement of the
cutout region when the trigger region is positioned at the
bottom-left corner. In addition, in Fig. 12, we provide an
example of computing Eq. (9), where each point in the area
represents a feasible integer solution of (w, h), the bottom-
left corner of cutout region. Similarly, as discussed in Sec.
5 in our paper, we visualize the results of Lemma 1.

Given that the failure probability of a single trigger pat-
tern is bounded in Lemma 1, we can extend our analysis to
repetitive patterns and explore methods to bound their fail-
ure probability in Lemma 2.

C.3.2 Proof of Lemma 2.

As mentioned in [10], cutout [6] operations and other strong
data augmentations also destroy low frequency in SSL train-
ing. Here, we only consider the high-frequency components
from M+ 1 to N−1, the total number of changeable coeffi-
cients is N−M−1. The first combination number should be(
N−M−1

β

)
, and it’s important to account for numbers greater

than β as well. The proof is concluded.
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