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Figure A. Power spectrum analysis. (a), (b), and (c) depict the power spectrum of spoof images. (d) presents the power spectrum of a real
image. In (a), patches with larger power spectrum values indicate the presence of more significant noise compared to (b), (c), and (d).
In this approach, we select patches with a large power spectrum to detect high-frequency anomalies, such as moiré patterns and atypical
illuminations, commonly encountered in spoofing images.

A. Analyses on Frequency Domain
Figure A represents the power spectrum analysis of the

spoof and real images. Among the spoof images (a-c), it
is evident that patches featuring the largest power spectra
conspicuously demonstrate a significantly heightened pres-
ence of noise in comparison to patches with the smallest
power spectra and random spectra. Moreover, when com-
pared to the authentic images in (d), (a) exhibits more pro-
nounced noise. The results show that patches with higher
power spectrum values encompass a significant presence
of high-frequency components, such as moiré patterns and
atypical illuminations, as shown in the original paper.

To capture these localized spoofing cues present within
images, we propose a frequency domain analysis-based
patch selection method. Our experimental results in the
original manuscript demonstrate that extracting patches
based on frequency domain analysis yields better results
compared to random patch extraction.

Figure B in the main experimental section of the pa-
per presents an enlarged view of the magnitude of Figure
3. The image at the top of the grid represents the average
magnitude of patches with the larger power spectrum we
proposed. In contrast, the image at the bottom depicts the
results obtained by sampling a smaller power spectrum, in
contrast to our proposed approach. As evident from the de-
picted images, the magnitudes created using our proposed
larger power spectrum exhibit distinct differences, particu-
larly in high frequencies, compared to the other three mag-
nitudes.

B. Domain Generalization Results

Table A presents the results of training the backbone net-
work trained on OULU-NPU with the MToFNet dataset. It
shows the significant efficiency of the proposed method in
terms of training parameters. Training the entire parameters
of the ResNet-18 network is approximately 83 times more
than training through the LoRA module. Despite having
fewer training parameters, the proposed method achieves
the best average HTER and EER on the DoFNet and GOSet
datasets. While the MToFNet and DoFNet datasets are dis-
tinct, the MToFNet dataset includes some data that is sim-
ilar to the DoFNet dataset. Consequently, GOLab, ResNet-
18, and ResNet-18 with our patch selection exhibit signifi-
cant overfitting to the training data from MToFNet, result-
ing in lower error rates on DoFNet. However, all of these
methods surpass an error rate of 40% on the GOSet dataset.
Table B represents the results of training the backbone net-
work trained on OULU-NPU with the DoFNet dataset. The
proposed method achieves the best average HTER and AUC
on the MToFNet and GOSet datasets at 15.3% and 87.9%,
respectively.

C. Training and Inference

In both training and inference, we consistently use the
power spectrum to extract the top k patches from each im-
age. This method ensures that we focus on the most infor-
mative regions during both phases. The reason this approach
is feasible is that, during training with the FAS dataset, we



Table A. Experimental results on the domain-generalization with face dataset and object dataset. The blue checks represent training through
the LoRA module on the object dataset. The red fonts indicate the addition of MToFNet training into the same backbone that was pre-
trained with OULU-NPU. The term #Param. indicates the number of train parameters when the backbone network is trained on object
dataset. ResNet-18 undergoes fine-tuning across all parameters. In contrast, the proposed method is trained using notably fewer parameters
through the utilization of the LoRA module.

Method Train set #Param. DoFNet GOSet AVG.
Face Object HTER EER AUC HTER EER AUC HTER EER AUC

Atoum et al. ! ! 3.5M 19.0 18.3 91.8 39.6 39.7 64.9 29.3 29.0 78.3
GOLab ! ! 3.0M 1.5 1.5 99.9 41.0 41.1 65.3 21.2 21.3 82.6
ResNet-18 ! ! 11.17M 8.3 7.6 97.4 40.2 40.1 63.3 24.2 23.8 80.3
ResNet-18 w Patch ! ! 11.22M 7.6 7.6 97.2 49.8 49.7 48.1 28.7 28.6 72.6
Ours ! ! 0.136M 6.6 7.8 97.1 27.3 27.3 80.6 17.5 16.9 88.8

Table B. Experimental results on the domain-generalization with face dataset and object dataset. The blue checks represent training through
the LoRA module on the object dataset. The red fonts indicate the addition of DoFNet training into the same backbone that was pre-trained
with OULU-NPU. The term #Param. indicates the number of train parameters when the backbone network is trained on object dataset.
ResNet-18 undergoes fine-tuning across all parameters. In contrast, the proposed method is trained using notably fewer parameters through
the utilization of the LoRA module.

Method Train set #Param. MToFNet GOSet AVG.
Face Object HTER EER AUC HTER EER AUC HTER EER AUC

Atoum et al. ! ! 3.5M 46.1 46.1 55.9 44.1 44.0 59.4 45.1 45.0 57.6
GOLab ! ! 3.0M 50.0 49.3 47.3 58.5 58.6 37.4 54.2 53.9 42.3
ResNet-18 ! ! 11.17M 20.5 20.4 87.8 33.2 33.3 69.0 26.8 26.8 78.4
ResNet-18 w Patch ! ! 11.22M 9.6 9.6 95.3 34.9 34.8 71.8 22.2 22.2 83.5
Ours ! ! 0.136M 4.0 4.0 99.0 26.6 26.6 76.8 15.3 15.3 87.9

excluded any images with partial attacks, ensuring that only
fully spoofed or real images were used. Additionally, in the
OAS dataset, partial attacks are not present, further justi-
fying the use of this patch selection method without con-
cern for missing important spoof cues in localized areas.
This consistency enhances the model’s ability to generalize
across both FAS and OAS datasets.

D. Description of LoRA for Convolution Layer
We applied LoRA to the convolutional layers of a

ResNet network, enhancing domain generalization perfor-
mance compared to fine-tuning all model parameters. The
original convolutional layer equation is as follows:

y = W ∗ x+ b (1)

where x represents the input, W denotes the filter (weights)
of the convolutional layers, and b is the bias term. The sym-
bol ∗ signifies the convolution operation. The equation for
a convolutional layer with LoRA applied is as follows:

y = (W + α · (B ×A)) ∗ x+ b (2)

where α is the scaling factor, and A and B are the LoRA
matrices.

By applying LoRA, we decompose the adjustment to the
convolutional weights into two low-rank matrices A and B,
which are learned during fine-tuning. This approach allows
us to efficiently adapt the convolutional filters with fewer
parameters compared to fine-tuning the entire weight ma-
trix W . This results in a more parameter-efficient adaptation
process, improving domain generalization without the need
for extensive retraining of the entire network. Additionally,
LoRA’s low-rank adaptation helps in reducing overfitting
by limiting the number of trainable parameters, making the
model more robust to new, unseen domains.

E. Ablation Study

In this section, we report the ablation studies regarding
LoRA positional configuration and patch configuration(the
number and size of the patch) of the proposed method.

E.1. LoRA Configuration

As demonstrated in Figure A, capturing subtle spoof-
ing cues necessitates an understanding of low-level infor-
mation. Through the exploration of architectural variations,
we conclude that fusing the first convolution block with the
stage 1 layer leads to optimal performance outcomes, as de-
picted in Table C. This aligns with the hypothesis that com-
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Figure B. This serves as an extra depiction for Figure 3 in the pri-
mary experimental section. (a) illustrates the magnitude of spoof-
ing patches, while (b) showcases the magnitude of patches ex-
tracted from real images. The upper row reflects sampling pred-
icated on higher spectrum values within the patches, whereas the
lower row involves sampling based on lower spectrum values. For
spoofing images, the differences are evident at the ends of the large
power spectrum (i.e., high frequency components), whereas for
real images, the differences appear in the middle (i.e., low fre-
quency components).

Table C. Ablation study on LoRA configuration. We evaluate the
experiments on the DoFNet dataset. Each Configuration denotes
the position ResNet-18 network.

LoRA Configuration HTER EER AUC
Conv1 21.8 22.4 88.2
Stage1 29.9 29.5 80.0
Stage2 26.9 26.5 78.4
Stage3 53.8 53.0 39.6
Stage4 19.7 19.8 91.3
FC 22.5 22.4 86.8
Ours (Conv1 + Stage1) 17.2 17.8 87.3

prehending low-level information is crucial for capturing
subtle cues, as discussed earlier in the original manuscript.

E.2. Patch Size

Table E presents the results of the ablation study con-
ducted on patch sizes. Based on these evaluations, we opted
for an image patch size of 64. The patch images of sizes
128 and 256 are more likely to include unnecessary infor-
mation. An image with a patch size of 32 is too small to

capture diverse information effectively.

E.3. Patch Number

Table F represents the results of the ablation study con-
ducted on the selected number of patches. Based on these
findings, we chose this specific patch number. Similar to the
results of the patch size ablation study, when the number of
patches is high, it can lead to the inclusion of unnecessary
information. Similar to the findings of the patch size abla-
tion study, a higher number of patches can lead to the inclu-
sion of unnecessary information. Conversely, having only 1
or 2 patches is too few to effectively capture information.

E.4. Learning Rate of LoRA Module

Table G presents the results of the ablation study con-
ducted on learning rate of LoRA module. Based on these
experiments, we use a learning rate of 1e-4, as it resulted in
the best HTER and EER performance.

E.5. ResNet Backbone Scale

We compare the performance in the same LoRA settings
as the backbone model size increases, as shown in Table D.
As the results indicate, enlarging the model size does not
lead to performance improvements. For a fair comparison in
most anti-spoofing tasks, we use ResNet-18. Therefore, we
have fine-tuned our method for the ResNet-18 setting, and
it is observed that using ResNet-50 or 101 with the same
settings results in decreased performance.

F. Dataset Description

The Object Anti-spoofing dataset employed in this study
encompasses the following three components:

F.1. GOSet

GOSet [3] constitutes a spoofing dataset comprising
2,849 video samples, organized into 24 spoof subjects and
7 spoof mediums. The GOSet data, captured in video for-
mat, possess the characteristic of blurred images, with sim-
ple backgrounds and a zoomed-in focus on the objects.

F.2. DoFNet

DoFNet [1] consists of 2,757 images. It incorporates
6 subjects and includes 3 attack mediums. Unlike other
datasets, DoFNet offers two images with differing focal
points, one focusing on the foreground and the other on the
background simultaneously. Due to its image-based nature,
DoFNet provides a very limited number of images, mak-
ing domain generalization without utilizing Depth of Field
highly restricted.



Table D. Ablation study on ResNet backbone scale. We used the GOSet dataset to train the models. We evaluate the experiments on the
DoFNet dataset and MToFNet dataset.

Method Train set DoFNet MToFNet AVG.
Face Object HTER EER AUC HTER EER AUC HTER EER AUC

ResNet-50 ! ! 31.4 31.1 77.0 26.2 26.4 80.1 28.8 28.7 78.5
ResNet-101 ! ! 42.6 42.8 59.6 33.9 33.6 72.3 38.2 38.2 65.9
Ours (ResNet-18) ! ! 17.2 17.8 87.3 8.0 7.7 97.2 12.6 12.7 92.2

Table E. Ablation study varying the size of the input image
patches. The evaluation is conducted on the DoFNET dataset.

Patch Size HTER EER AUC
32 32.4 31.6 73.0
128 37.8 37.7 59.3
256 38.0 38.2 68.5
Ours (64) 17.2 17.8 87.3

Table F. Ablation study varying the number of the input image
patches with 64 × 64 size. The entire evaluation is conducted on
the DoFNET dataset.

Patch Num HTER EER AUC
1 22.8 22.9 86.8
2 22.8 22.9 80.7
3 26.9 26.5 82.0
4 26.1 26.5 76.3
10 29.1 28.0 75.7
Ours (5) 17.2 17.8 87.3

Table G. Ablation study on the learning rate of LoRA module. The
evaluation is conducted on the DoFNET dataset.

Learning Rate HTER EER AUC
5e-5 18.2 18.3 90.1
1e-3 20.8 20.4 85.8
1e-2 36.5 36.7 67.9
Ours (1e-4) 17.2 17.8 87.3

F.3. MToFNet

MToFNet [2] comprises 12,529 images, encompassing
27 spoof subjects and 16 spoof mediums. It also simultane-
ously provides depth maps collected using a Time-of-Flight
sensor. Notably, MToFNet includes images from DoFNet.
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