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Hyperparameter LoRA KAdaptation LoRA-MoA KMoA

# of Experts N/A 4 4
Scale of Laux N/A 0.01 0.01
Router N/A Cosine
Router Top-k N/A Top-1
Rank of adapter (ri) 2 1 [1, 2, 4, 8]
# of Kroneker products (t) N/A 64 N/A 64
Batch size 160 (DomainNet), 96 (Otherwise)
Learning rate 5e− 5
Optimizer Adam

Table 1. List of hyperparameters used in experiments on domain
generalization benchmarks.

In this supplemental material, we provide additional
analysis results and visualizations. We also include the code
needed to reproduce our experimental results.

1. Additional implementation details

All adapters, except LoRA, are implemented from their
official repositories; LoRA is implemented using an unof-
ficial version [13]. By following the previous experimental
settings, Adam [9] optimizer is used for model optimization
along with a learning rate of 5e− 5. A batch size of 32 per
domain is used for the ViT-Base model. We run 15,000 it-
erations on DomainNet and 5,000 for others, and evaluate
at every 500 iteration steps for DomainNet, 200 steps for
others. We perform all experiment on one machine with 8
NVIDIA RTX3090 GPUs.

Evaluation protocols and datasets. For a fair compari-
son, we employ DomainBed evaluation protocols [2,5]. The
following five benchmark datasets: PACS [10], VLCS [4],
OfficeHome [14], TerraIncognita [1], and DomainNet [12].
Using a leave-one-out cross-validation, all performance
scores are evaluated by averaging all the cases that use a sin-
gle domain as the target domain and the others as the source
domains. Experiment is repeated three times and 20% per-
cent of source domain data is left out for validation pur-
poses. Lastly model selection (training-domain validation)
and hyperparameter search follow DomainBed procedures.
We perform three runs with different random seeds for each
setting and report their mean and standard deviation to show

Test Env. Laux
Expert

Std
0 1 2 3

Art
✗ 0.03 0.14 0.23 0.60 0.213
✓ 0.22 0.26 0.32 0.21 0.044

Cartoon
✗ 0.02 0.19 0.07 0.72 0.275
✓ 0.23 0.18 0.25 0.35 0.062

Photo
✗ 0.07 0.17 0.56 0.21 0.184
✓ 0.23 0.21 0.29 0.26 0.030

Sketch
✗ 0.10 0.17 0.16 0.57 0.185
✓ 0.32 0.31 0.17 0.20 0.065

Table 2. Analysis about the effectiveness of auxiliary loss on
PACS dataset. Each number represents the relative allocation ra-
tio, calculated by counting the number of tokens routed to each
expert and dividing by the total number of tokens.

the training randomness. In ablation studies, we keep all the
random seeds fixed and conduct the experiment.

2. Additional analysis

In this section, we present an additional analysis of
routed tokens, loss landscapes, and maximum Hessian
eigenvalue spectra.

2.1. Comparisons of loss landscape visualizations

We show loss landscapes for all test environments in
PACS dataset [10] in Fig. 1. Similar with the visualiza-
tions in main paper, the other test environments have a ten-
dency that fully fine-tuned models show most sharp loss
landscape. But trained models with LoRA and KAdapta-
tion shows much more flatter loss landscapes, especially
KAdaptation have most flat loss landscape.

2.2. Analysis about the effectiveness of auxiliary loss

In this section, we analyze how our model’s router allo-
cates each token according to Laux. As shown in Fig. 2,
without the auxiliary loss, the router’s token allocation to
the experts is highly imbalanced. However, when the aux-
iliary loss is applied, the allocation becomes significantly
more balanced. We show the standard deviation of the to-
kens in Table 2. The results indicate that training with Laux
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leads to a more balanced distribution of tokens across the
experts. This balance could play a crucial role when scaling
up the model or applying it to downstream tasks.

2.3. Visualizations of routed patches in PACS and
TerraIncognita dataset.

We additionally show the visualizations of routed patch
indices in Fig. 3, 4 on PACS dataset [10], and Fig. 5, 6 on
TerraIncognita dataset [1]. All images are visualizations
from the last adapter-attached transformer layer, layer 10.
Similar with the findings from main paper, we can observe
that same indices are clustered at the regions where having
semantic meanings.

2.4. Limitations

Our method heavily relies on the performance of large
pretrained models, hence using a better pretrained model
can lead to improved performance. But, such models are
limited and require a substantial amount of time and cost
for training. These weakness also exist in methods like
MIRO [3] or SIMPLE [11], and the availability of high-
performance open-source models like OpenCLIP [8] can
alleviate these drawbacks. Our approach may not signifi-
cantly outperform on datasets more challenging than Ter-
raIncognita due to fewer trainable parameters compared to
fully fine-tuned DG algorithms. However, it offers flexibil-
ity by adjusting trainable parameters via the inner rank ri,
and optimal rank can be obtained through hyperparameter
search, effectively addressing this limitation.

References
[1] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition

in terra incognita. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 456–473, 2018. 1,
2, 7, 8

[2] Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-
Cheol Cho, Seunghyun Park, Yunsung Lee, and Sungrae
Park. Swad: Domain generalization by seeking flat min-
ima. Advances in Neural Information Processing Systems,
34:22405–22418, 2021. 1

[3] Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk
Chun. Domain generalization by mutual-information reg-
ularization with pre-trained models. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XXIII, pages 440–
457. Springer, 2022. 2

[4] Chen Fang, Ye Xu, and Daniel N Rockmore. Unbiased met-
ric learning: On the utilization of multiple datasets and web
images for softening bias. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1657–1664,
2013. 1

[5] Ishaan Gulrajani and David Lopez-Paz. In search of lost do-
main generalization. In International Conference on Learn-
ing Representations, 2020. 1

[6] Xuehai He, Chunyuan Li, Pengchuan Zhang, Jianwei Yang,
and Xin Eric Wang. Parameter-efficient fine-tuning for vi-
sion transformers. arXiv preprint arXiv:2203.16329, 2022.
3

[7] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-
rank adaptation of large language models. In International
Conference on Learning Representations, 2021. 3

[8] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade
Gordon, Nicholas Carlini, Rohan Taori, Achal Dave,
Vaishaal Shankar, Hongseok Namkoong, John Miller, Han-
naneh Hajishirzi, Ali Farhadi, and Ludwig Schmidt. Open-
clip, July 2021. 2

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[10] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Deeper, broader and artier domain generaliza-
tion. In Proceedings of the IEEE international conference on
computer vision, pages 5542–5550, 2017. 1, 2, 3, 5, 6

[11] Ziyue Li, Kan Ren, Xinyang Jiang, Yifei Shen, Haipeng
Zhang, and Dongsheng Li. Simple: Specialized model-
sample matching for domain generalization. In The
Eleventh International Conference on Learning Representa-
tions, 2023. 2

[12] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1406–1415,
2019. 1

[13] Simo Ryu. lora. https : / / github . com /
cloneofsimo/lora, 2023. 1, 3

[14] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 5018–5027, 2017. 1



TE0 TE1 TE2 TE3

(a) Full fine-tuning

TE0 TE1 TE2 TE3

(b) LoRA [7, 13]

TE0 TE1 TE2 TE3

(c) KAdaptation [6]

TE0 TE1 TE2 TE3

(d) KAdaptation with Mixture-of-Adapter (Ours)

Figure 1. Flatness comparison of loss surfaces trained with full fine-tuning, LoRA, KAdaptation, and KAdaptation with mixture-of-expert
on the PACS dataset [10].
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Figure 2. Visualizations of token routing tendencies with and without the auxiliary loss on PACS dataset. TE0 to TE3 correspond to the
domains in the PACS dataset: Art painting, Cartoon, Photo, and Sketch. The x-axis represents the layer names containing the router and
experts, while the y-axis shows the number of tokens allocated to each expert.



Figure 3. Visualizations of routed indices of each patch. We show a total of seven classes in PACS dataset [10], with one class per row
in the order of ‘Dog’, ‘Elephant’, ‘Giraffe’. Also, in each column, the same domains are located in the order of ‘Art Painting’, ‘Cartoon’,
‘Photo’, and ‘Sketch’.



Figure 4. Visualizations of routed indices of each patch. We show a total of seven classes in PACS dataset [10], with one class per row
in the order of ‘Guitar’, ‘Horse’, ‘House’, ‘Person’. Also, in each column, the same domains are located in the order of ‘Art Painting’,
‘Cartoon’, ‘Photo’, and ‘Sketch’.



Location 43

Figure 5. Visualizations of routed indices for each patch in the TerraIncognita [1] dataset. The left column displays the original image,
while in the right column, we indicate where each patch is routed. The upper and lower images were taken at the same location but different
times, therefore they share the same background but feature different object (bird) in terms of shape and location.
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Figure 6. Visualizations of routed indices for each patch in the TerraIncognita [1] dataset. The left column displays the original image,
while in the right column, we indicate where each patch is routed. The upper and lower images were taken at the same location but different
times, therefore they share the same background but feature different object (opossum) in terms of shape and location.


