
Appendices
A. Implemenation Details of Our Baseline

In this section, we delve into the unique challenges associ-
ated with introducing rotation capabilities to DETR models
and detail our specific implementation strategies.

Angle Prediction by Simple Extended Box Regressor. In
the DETRs, the coordinates of objects are handled as nor-
malized ranges [0, 1] (relative to the image size) in the
training stage. The normalized predicted coordinates from
the sigmoid function are recovered to the original range
by multiplying the width and height of the input image.
One straightforward method to equip DETRs with the ca-
pability to predict an object’s orientation is by extending
the output of the regression head to b ∈ [0, 1]5, where
b = [bx, by, bw, bh, bθ] represents the normalized center co-
ordinates, box width and height, and the angle in radians,
respectively. Similar to the center coordinates and width
and height, the angle should also be normalized. To facil-
itate this, we adopt the Long Edge Definition (θ ∈ [0, π))
and normalize angle values to lie within the [0, 1] range by
dividing the ground truth angles by π. During the training
phase, the rotated DETR is trained to predict these normal-
ized coordinates. At the inference time, the predictions are
converted back to their original scale by multiplying the
output b with [Iw, Ih, Iw, Ih, π], where Iw and Ih denote
the width and height of the image, respectively. By treating
angles the same way as other coordinate values, rather than
introducing a dedicated angle prediction branch, the model
can easily incorporate other developed components related
to coordinates, such as iterative bounding box refinement,
handling queries as anchor boxes, and proposing queries
from the feature map of the encoder.

Replacement of GIoU Loss. The standard costs and losses
used in DETRs are Focal loss, L1 loss, and GIoU loss. How-
ever, calculating overlaps between two rotated objects is com-
monly known to be indifferentiable [11, 12, 34]. Therefore,
we need to consider alternative options to replace GIoU loss
for rotated objects. Two representative substitutes for repre-
senting the error between predictions and ground truth for ro-
tated objects are Gaussian Wasserstein Distance (GWD) [12]
and Kullback-Leibler Divergence (KLD) [11]. The center
distance term in GWD and KLD also works as the penalty
term for non-overlapping bounding boxes, similar to GIoU
loss. We adopt KLD as our baseline to replace the GIoU
cost and loss since previous work has shown that KLD out-
performs GWD in oriented object detection. Additionally,
we set the weight for the IoU term from 2 to 5 based on the
comparison experiment, which is shown in Table 8a. This
weight is applied to all our experiments except the experi-
ments conducted on the patch validation set.

Rotated Deformable Attention. In order to address the
slow convergence and high computational memory complex-
ity associated with the multi-head attention module in the

(a) ARS-DETR

(b) DAB-DETR

(c) Ours

Figure 5. Comparison of attention layers in different models. (a)
ARS-DETR, based on Deformable DETR, predicts reference boxes
from learnable queries but does not fully integrate angle information
into the objects’ spatial information. (b) DAB-DETR, which our
model builds upon, defines learnable queries as horizontal anchors.
(c) Our model extends this approach by defining anchors as rotated
boxes, leveraging methods such as iterative refinement and two-
stage proposals from DINO, resulting in improved integration of
angle information.

original DETR, Zhu et al. [19] proposed a deformable atten-
tion module. This module takes an input feature map and
either 2D reference points p2 = (px, py) or 4D reference
boxes p4 = (px, py, pw, ph), where (px, py) represents a se-
ries of center coordinates and (pw, ph) represents a series of
widths and heights for the reference boxes, to determine the
sampling location. The sampling locations for 2D reference
points are obtained by adding the predicted sampling offsets
to the given reference points. In the case of 4D reference
boxes, the predicted sampling offsets are first added to the
center coordinates of reference boxes. Then, the resulting
values are multiplied by half of the widths and heights of
the reference boxes to determine the final 2D coordinates for
the sampling locations. Using these 4D reference boxes en-
hances performance through iterative refinement and query
proposal from the encoder.

As Zhu et al. [28] pointed out, using {bx, by, bw, bh} as
reference boxes from 5D reference boxes by dropping brad
leads to feature misalignment, especially in deformable atten-
tion modules. We apply a similar way to ARS-DETR [28] to
rotate the center coordinates from the reference boxes. The
predicted normalized angles are recovered by multiplying
the normalized factor π, and the next steps follow the case
of 4D reference boxes as described previously. In contrast
to the approach proposed by Zeng et al. [28], we update
5D reference boxes including angles during the iterative re-
finement step. To update the 5D reference boxes, we apply
the inverse sigmoid function to the reference points and add
the resulting values to the logit of the regression head in
logit space. We then normalize the updated values using the
sigmoid function, which maps them to the range of [0, 1].
The same update logic is also applied to the predicted re-
gression in the head part. A visualization of our deformable
attention is illustrated in Figure 5. Building on the princi-
ples of DAB-DETR [20], which defines learnable queries
as dynamic anchor boxes, our model integrates angles into
oriented reference boxes in a natural way.

Extension to DINO. By straightforwardly extending the
regression head with 5D rotated boxes, the model is able
to naturally adopt the developed mechanisms such as
queries as dynamic anchor boxes proposed by successive
works [20, 21, 39]. Here, we just brief some implemen-
tation details to note. The two-stage scheme introduced
by Deformable-DETR [19], requires generating grid pro-
posals from the encoded features, and predicting query
proposals by running the regression head to the encoded
features. In our implementation, We use zero-angle grids to
generate grid proposals from the encoded features and run
the regression head on the flattened feature vectors. This
allows the regression output to be added directly to the pro-
posals. For denoising training [21, 39], we add noises only
to {bx, by, bw, bh} for simplicity. We exclude the angle for

the decoder positional queries which are related to mixed
query selection in DINO [21]. Finally, we experiment with
models using 900 queries and set the maximum number
of predictions to 500 to handle densely packed objects in
remote sensing images.

B. Implementation Details of RHINO

We implement our models on MMRotate [52] v1.0.0rc1.
Most of our experiments were conducted on 2 NVIDIA
V100 or A100 GPUs, with a total batch size of 8. Two
backbones: ResNet-50 [53] and Swin-Tiny [54] are used in
our experiments, both of which are pre-trained on ImageNet-
1k [55]. We use the AdamW [56, 57] optimizer with an initial
learning rate of 1× 10−4. We use a step decay learning rate
schedule where the learning rate is multiplied by 0.1 at the
11th epoch during the 12 epoch training and multiplied by
0.1 again at the 27th and 33rd epochs during the 36 epoch
training. For DOTA-v1.0/v1.5/v2.0, we crop each image in
the data sets to 1024× 1024 pixels with a 200-pixel overlap.
The input size of experiments on DIOR-R is set to 800×800.
We use only horizontal, vertical, and diagonal flips without
additional augmentations.

C. More Ablation Studies on Model Components.

Effect of the number of points for the Hausdorff dis-
tance. In our approach, we approximate the Hausdorff dis-
tance between two rotated boxes using points along the box
edges. As illustrated in Figure 6, increasing the number of
points improves the precision of matching, as reflected in the
IoU. To assess the effect of point count, we evaluated differ-
ent configurations, with the results summarized in Table 8b.
The 4-point configuration achieved the highest performance
in AP50, with a score of 78.68. However, the 32-point con-
figuration yielded the best result in AP75, achieving 51.84.
Since AP75 uses a stricter IoU threshold of 0.75 compared
to 0.5 in AP50, this indicates that increasing the number
of points improves performance in more precise matching
evaluations. Nevertheless, for simplicity and efficiency, we
use 4 points to compute the Hausdorff distance in all other
experiments.

Updating angles in logit space. Table 8c presents the
importance of updating angles in DETR components. IR
and Two-Stage represent iterative bounding box refinement
and a two-stage approach, respectively, as introduced by
Deformable DETR, but without incorporating the angle pa-
rameter. 5D RP refers to the updating angles of 5D reference
points in Decoder layers, while 5D Head refers to the up-
dating angles of predictions using reference points in the
head module. No checkmark in 5D RP or 5D Head columns
indicates that only the coordinates {bx, by, bw, bh} of the ref-
erence points or predictions are updated. This finding illus-
trates that treating oriented object detection as a regression
problem benefits from adopting the latest query-as-bounding-

Table 8. Further ablation studies on DOTA-v1.0.

(a) Robustness on weight for IoU term

LL1 Cost LL1 Loss λiou AP50 w NMS

None None 2 68.30 +0.10
None None 5 70.18 -0.05

Hausdorff L1 2 70.81 -0.09
Hausdorff L1 5 70.94 +0.16

(b) The number of points for the Hausdorff distance

points AQD* AP50 AP75

4 ✓ 78.68 51.17
8 ✓ 78.12 51.02
32 ✓ 78.49 51.84

(c) Effect of updating angles in the baseline

Model Epochs IR Two-Stage 5D RP 5D Head AP50

Deformable DETR 50 - - - - 68.50
Deformable DETR 50 ✓ - - - 68.54
Deformable DETR 50 ✓ ✓ - - 70.48

DINO 12 ✓ ✓ - - 71.36
DINO 12 ✓ ✓ ✓ - 72.76
DINO 12 ✓ ✓ ✓ ✓ 76.10

(a) Hausdorff distance with 4 points.
(b) Hausdorff distance with 16
points.

Figure 6. Visualization of the Hausdorff distance for different
numbers of points. Matching is based on the smaller Hausdorff
distance, with higher IoU indicating better matching.

box approaches proposed in state-of-the-art DETR models.
Analysis of the impact of aspect ratios. To evaluate

the effectiveness of the Hausdorff distance in addressing the
issue of duplicate predictions, we conducted a class-wise
performance comparison using the DOTA-v1.0 patch valida-
tion set. The results, detailed in Table 10, reveal that using
the Hausdorff distance significantly improves performance
for square-like objects, such as baseball-diamond,
storage-tank, and roundabout.

D. Computational Cost Comparison

Table 9 presents a performance comparison of different
methods. Note that DINO requires more computation due
to its Transformer modules. Using the Hausdorff distance
(with 4 corner points) enhances performance without sig-
nificantly increasing computation. The adaptive query de-
noising method incurs higher computational costs because it
involves additional bipartite matching during the denoising
process. However, the inference speed and number of param-
eters remain unchanged compared to DINO, as the proposed

methods primarily affect model training.

E. Experiments on Other Rotated Object Datasets

We extend the evaluation of our model, RHINO, by com-
paring it with the DINO baseline across various other rotated
object detection datasets. Specifically, we focus on two scene
text detection datasets, MSRA-TD500 and ICDAR2015, as
well as the retail object dataset SKU110K-R. For the MSRA-
TD500 dataset, we trained both RHINO and DINO mod-
els for 50 epochs. For the SKU110K-R and ICDAR2015
datasets, the training duration was set to 36 epochs. As
detailed in Table 11, RHINO consistently outperforms the
DINO baseline, demonstrating its robustness and effective-
ness even though these datasets generally include non-square
objects.

Table 12 presents a comparison between our model and
state-of-the-art models on the HRSC2016, which is a widely
used aerial ship dataset for oriented object detection. While
our model, RHINO, exhibits marginally lower performance
than the state-of-the-art models in terms of mAP07, it is note-
worthy that RHINO surpasses all other models in mAP12.

F. Visualization

Figure 7 presents a qualitative comparison of our models
and other models. Notably, the RoI Transformer demon-
strates lower precision in predicting object angles compared
to our model and ARS-DETR.

Figure 8 and Figure 9 provide further comparisons be-
tween the baseline and our model. Overall, RHINO exhibits
relatively consistent non-duplicate predictions compared to
the baseline, especially in square-like objects, as shown in
Figure 9. However, it is important to note that RHINO
occasionally produces duplicate predictions on the MSRA-
TD500 dataset. We assume this is due to the small amount
of training dataset for MSRA-TD500.

Table 9. Computational cost comparison using 2 A-40 GPUs on DOTA-v1.0

Method Params GFLOPs FPSbs=1 Inf. Memory Train Time Train Memory AP50

DCFL [7] 36.1M 157.80 23 2.3 GB 11 Hours 4 GB 75.35
ARS-DETR [28] 41.6M 205.95 14 2.2 GB 24 Hours 10-11 GB 73.42

DINO 47.3M 280.38 13 2.2 GB 25 Hours 16-20 GB 74.56
+ Hausdorff dist. 47.3M 280.38 13 2.2 GB 25 Hours 16-20 GB 76.14
+ AQD* 47.3M 280.38 13 2.2 GB 30 Hours 16-20 GB 78.68

Table 10. Class-wise performance and its average aspect ratios on
the patch validation set.

class Aspect Ratio L1 Hausdorff

plane 0.7982 89.0 89.8
baseball-diamond 0.9239 67.1 71.5
bridge 0.4350 48.6 50.9
ground-track-field 0.5044 66.3 66.8
small-vehicle 0.4736 69.2 69.1
large-vehicle 0.2746 84.5 83.7
ship 0.3535 87.7 88.4
tennis-court 0.4828 90.6 90.5
basketball-court 0.5748 60.0 56.7
storage-tank 0.9365 63.3 73.1
soccer-ball-field 0.6109 56.2 58.2
roundabout 0.9224 52.3 60.8
harbor 0.4018 75.8 76.5
swimming-pool 0.6087 53.7 54.9
helicopter 0.7146 55.5 71.4

AP50 0.4705 68.0 70.81

Table 11. Performance comparison on rotated object datasets

Method Dataset AP50 Hmean50

DINO SKU110K-R 87.22 -
RHINO 88.30 -

DINO MSRA-TD500 - 0.5862
RHINO - 0.6173

DINO ICDAR2015 - 0.5685
RHINO - 0.5819

Table 12. Performance comparison on HRSC2016.

Method Backbone mAP07 mAP12

RoI Trans. [3] R-101 86.20 -
R3Det [58] R-101 89.26 96.01
S2ANet [8] R-101 90.17 95.01
Oriented R-CNN [10] R-50 90.40 96.50
ReDet [9] ReR-50 90.46 97.63
RTMDet-R-tiny [46] CSPNeXt-tiny 90.60 97.10

DINO [21] (Our implementation) R-50 90.26 97.37
RHINO (Ours) R-50 90.30 97.86

G. Limitation

Despite the significant performance improvements
achieved by our model, some limitations exist. The adaptive
query denoising method, which leverages bipartite matching

to filter out harmful noised queries selectively, necessitates
extended training times, as shown in Table 9. Furthermore,
while adaptive query denoising consistently enhances per-
formance across various rotated object detection tasks, its
application to the DINO model trained on the COCO dataset
results in a slight performance decrement (-1.6 AP) com-
pared to the baseline. We suspect this reduction in perfor-
mance may stem from the observation that the denoising task
for horizontally aligned objects is less impacted by noisy
queries, unlike their rotated counterparts. Future work may
explore more improved methods to adaptively control de-
noising tasks, potentially bypassing the need for bipartite
matching. such as the adaptive matching cost for denoising.
This might include developing an adaptive matching cost
specifically tailored for the denoising task, which could offer
a more nuanced approach to improving model performance
while mitigating extended training times.

Algorithm 1 Contrastive Query Denoising of DINO [21].

Input: Predicted objects p = {p0, p1, . . . , pN−1}, Ground truths y = {y0, y1, . . . , yM−1}, Positive noised queries
qpos = {qpos0 , qpos1 , . . . , qposM−1}, Negative noised queries qneg = {qneg0 , qneg1 , . . . , qnegM−1}.

1: Initialization: ppos = frefine(q
pos), pneg = frefine(q

neg).
Calculate the loss: Ldenoising(p

pos,pneg,y) =
∑M−1

i=0 Lpos(p
pos
i , yi) + Lneg(p

neg
i ,∅).

Match Queries and Predictions
2: Set assignment σ with the corresponding ground truths.
3: σ = 0, 1, . . . ,M − 1.

Filter Unhelpful Queries:
4: Lpos(p

pos
i , yi) = 1{σi=i}Ltrain(p

pos
i , yi).

5: Update: Perform backpropagation and update model parameters.

Algorithm 2 Our Improved Adaptive Query Denoising. The blue text lines represent the modifications and highlight the
differences from Algorithm 1.

Input: Predicted objects p = {p0, p1, . . . , pN−1}, Ground truths y = {y0, y1, . . . , yM−1}, Positive noised queries
qpos = {qpos0 , qpos1 , . . . , qposM−1}, Negative noised queries qneg = {qneg0 , qneg1 , . . . , qnegM−1}.

1: Initialization: ppos = frefine(q
pos), pneg = frefine(q

neg).
Denoising Loss: Ldenoising(p

pos,pneg,y) =
∑M−1

i=0 Lpos(p
pos
i , yi) + Lneg(p

neg
i ,∅).

Match Queries and Predictions
2: pall = [ppos;p] = [ppos0 , ppos1 , . . . , pposM−1, p0, p1, . . . , pN−1].
3: Find optimal assignment σ using bipartite matching.
4: σ̂ = argminσ∈S

∑M+N−1
i=0 Lmatch(ŷi,p

all
σi
).

Filter Unhelpful Queries:
5: Lpos(p

pos
i , yi) = 1{σ̂i=i}Ltrain(p

pos
i , yi) + 1{σ̂i ̸=i}Lneg(p

pos
i ,∅).

6: L∗
pos(p

pos
i , yi) = Lpos(p

pos
i , yi) + 1{σ̂i ̸=i}Lbbox(p

pos
i , yi).

7: Update: Perform backpropagation and update model parameters.

Figure 7. Qualitative comparison between our model and other models on the DOTA-v1.0 dataset.

Figure 8. Qualitative comparison between the baseline and our model on the MSRA-TD500 dataset.

Figure 9. Qualitative comparison between the baseline and our model on the SKU110K-R dataset.

