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In this supplementary material, we provide additional
details and experimental results to support the main sub-
mission. Section A shows experiment settings in the main
paper. Section B presents visualization results showing the
impact of changes in probabilistic density labeling smooth-
ing parameters. Section C provides mask reconstruction re-
sults for the pre-training. Section D shows the practical ap-
plicability across various rainfall patterns using KDE visu-
alization. Section E describes and discusses the additional
qualitative results.

A. Implementation details
We extensively experimented with parameters to tailor

configurations for the real-world dataset, considering their
noise levels and dynamic characteristics to ensure a fair
comparison of models. We utilized Optuna1 to optimize
parameters, randomly employing values of 3 configs as fol-
lows:

• β1: [0.5, 0.9, 0.95]

• β2: [0.95, 0.999]

• learning rate: [1e-6, 5e-6, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3].

We found the most suitable parameters through 30 trials,
incorporating pruning. To enhance the efficiency of the op-
timization process, we employed pruning to discard trials
that are expected to be unpromising in the future.

Our experiments are conducted on the NVIDIA A100
GPUs. SSLPDL and the baseline models are tailored to
operate efficiently on a single GPU without model paral-
lelization. Training configuration employs an AdamW op-
timizer with momentum parameters β1=0.5 and β2=0.95,

∗Equal contribution
1https://optuna.org/

Figure 1. RDAPS domain visualization. The geographical scope
encompasses East Asia, the prediction area defined by RDAPS,
and serves as the input data. We align this area with the latitude
coordinates of the Korean Peninsula dataset to match the ground
truth. When verifying the data, sea observations are adjusted using
limited data, ensuring that only land observations (color pixels) are
verified to uphold reliability.

and a weight decay of 0.01. Additionally, we defined the
loss weight of the cross-entropy to wi=1, 5, 10. We trained
the baseline frameworks by comparing the settings identi-
fied by Optuna with their officially released original papers:
ConvLSTM2, Metnet3, MAE4, Swin-UNet, and PostRain-
Bench5.

A.1. ConvLSTM

ConvLSTM [3] was presented as a network for predict-
ing space-time patterns by applying convolutions to the re-
current state transitions of an LSTM cell. KIM et al. [1]

2https://github.com/ndrplz/ConvLSTM_pytorch
3https : / / github . com / osilab - kaist / KoMet -

Benchmark-Dataset
4https://github.com/facebookresearch/mae_st
5https://github.com/yyyujintang/PostRainBench
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Block Layer Resolution Channels
Input - 224 × 128 16

Masking
Tokenization 224 × 128 → 448 16 → 1024

Masking (4 × 448) → (4 × 448 × (1-M )) 1024

Encoder
Embedding (4 × 448 × (1-M )) 1024
MLP × 24 (4 × 448 × (1-M )) 1024

Layer Norm (4 × 448 × (1-M )) 1024

Decoder

Mask tokens appending (4 × 448 × (1-M )) → (4 × 448) 1024
Embedding (4 × 448) 1024
MLP × 8 (4 × 448) 1024

Layer Norm (4 × 448) 1024
MLP (4 × 448) 1024 → (c × 32)

Output - 224 × 128 c

Table 1. The details of the MAE on our dataset. Mask tokens appending involves appending the number of pixels equivalent to the mask
ratio (M ) alongside the unmasked pixels to form the final composition of pixels. Layer norm represents the Layer Normalization layers,
and (·) denotes the flattened shape of each axis.

utilized ConvLSTM to analyze three-dimensional patterns
in NWP forecasts, enabling spatial pattern analysis through
Convolution and correlation analysis between variables us-
ing LSTM. We employed ConvLSTM configured with a
window size of 3 and a learning rate of 1e-3 for evaluation.

A.2. Metnet

Sonderby et al. [4] proposed Metnet for precipitation
nowcasting. Metnet consists of ConvLSTM cells that em-
ploy an axial attention mechanism. Kim et al. [1] used Met-
net for a precipitation correction that outperformed other ar-
chitectures. Based on our experimental findings, we chose
a window size of 3 and an axial channel of 32 for this of-
ficial paper. We set the window size to three for the model
validation and the learning rate of 5e-3.

A.3. MAE

We used a 3D patch size of 4×16×16 for time, height,
and width. Additionally, we adopt two separable positional
embeddings for the encoder and decoder for space-time po-
sitional embeddings. Note that the embeddings are learn-
able positional embedding [6]. Table 1 shows the details
of the structure we applied to our dataset using MAE’s net-

Config Pre-training Transfer learning

optimizer AdamW AdamW
optimizer momentum β1, β2=0.9, 0.95 β1, β2=0.5, 0.95
weight decay 0.05 0.01
learning rate 1.6e-3 1e-4
learning rate schedule cosine decay -
warmup epochs 120 -
epochs 1000 200
batch size 64 32
gradient clipping 0.02 -
checkpoint Lrec mIoU

Table 2. Hyperparameters setting

work. For pre-training, we follow the official configura-
tions. We use the AdamW optimizer with a batch size of
64. We employed the same pre-training settings as in Table
2 for our model.

A.4. Swin-Unet and PostRainBench

PostRainBench [5] is a post-processing model based on
Swin-Unet, incorporating a channel attention module to ag-
gregate spatial information. In line with the official paper,
we trained the model using multitask learning that involves
both regression and segmentation tasks. The training con-
figuration was set with a batch size of 32 and a learning rate
of 1e-4. For the segmentation task, we used class weights of
[1, 5, 10], which were in line with those used in our models.

A.5. Ours

Our encoder employs an InternImage [7] architec-
ture. The proposed model uses a spatiotemporal masking
method. We set a spatial patch size of 16×16 and a tempo-
ral patch size of 4. For a 16×224×128 input, the patch size
was 4×16×16. Our pre-training configuration follows that
presented in [7]. Table 3 presents details on the blocks of the
encoder network and the size of input variables according to
each block in our dataset. Vanilla UperNet is structured in
the decoder for both reconstruction and segmentation tasks.

The following hyper-parameters are set for our model.
Pre-training configuration employs an AdamW optimizer
with momentum parameters β1=0.9 and β2=0.95, and a
weight decay of 0.05. We set the learning rate of 1.6e-3,
beginning with a warm-up period spanning 120 epochs and
culminating in 1000 epochs. We utilize a batch size of 64
and apply gradient clipping at 0.02 to promote stability dur-
ing training. For the training phase, the learning rate is re-
duced to 1e-4, with the batch size adjusted to 32, optimizing
the network for subsequent downstream tasks. The detailed



Block Layer Resolution Channels
Input - 224 × 128 16

Masking

Tokenization 224 × 128 → (4 × 448) 16 → 1024
Masking (4 × 448) → (4 × 448 × (1-M )) 1024

Mask tokens appending (4 × 448 × (1-M )) → (4 × 448) 1024
Embedding (4 × 448) 1024
Layer norm (4 × 448) 1024

- (4 × 448) → 224 × 128 1024 → 16

Stem

Conv3×3 224 × 128 → 224/2i × 128/2i 16 → 64
Batch Norm 224/2i × 128/2i 64

GELU 224/2i × 128/2i 64
Conv3×3 224/2i × 128/2i 64

Batch norm 224/2i × 128/2i 64
GELU 224/2i × 128/2i 64

Dropout 224/2i × 128/2i 64

Stagei∈{1,2,3,4}

Layer norm 224/2i × 128/2i 64×2i−1

Deformable Conv 224/2i × 128/2i 64×2i−1

Dropout 224/2i × 128/2i 64×2i−1

Residual 224/2i × 128/2i 64×2i−1

Layer norm 224/2i × 128/2i 64×2i−1

Conv3×3 224/2i × 128/2i → 224/2i+1 × 128/2i+1 64×2i−1 → 64×2i

Table 3. We provide the details of the SSLPDL encoder on our dataset. Mask tokens appending involves appending the number of pixels
equivalent to the mask ratio (M ) alongside the unmasked pixels to form the final composition of pixels. Conv3×3, Batch norm and Layer
norm is the 2D convolutional layer with 3 × 3 kernel, Batch normalization layers, and Layer Normalization layers, respectively. (·) denotes
the flattened shape of each axis. Residual represents residual layers for adding the previous stage output features.

architecture configurations of Encoder of SSLPDL are de-
scribed in Table 3.

B. Probabilistic density labeling

Representing the probability of rainfall instances
through probabilistic density labeling, we investigate var-
ious gradients to identify smooth transition points in proba-
bility values by adjusting the α parameter. Figure 2 shows
the probability values of group 2 and group 3 of pre-
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Figure 2. Visualization results illustrate the impact of varying the
smoothing parameter α on the probability estimates for two dis-
tinct rainfall intensity groups: (a) Group 2 with rain 0.1 ≤ y < 10,
and (b) Group 3 with moderate to heavy rain 10 ≤ y < 100. Each
line corresponds to a different α value, demonstrating the effect of
parameter adjustment on the transition smoothness of probability
estimates.

cipitation, smoothed as α is adjusted. We enhanced the
model generalization performance through gradient-based
smoothing adjustments and effectively prevented overfit-
ting. Label smoothing moderates the confidence assigned
to the true labels, preventing the model from exhibiting ex-
cessive certainty.

C. Mask reconstruction results

In this section, we analyze the reconstruction results ob-
tained during pre-training. Figure 3 illustrates the recon-
struction performance for input data comprising 16 meteo-
rological variables, based on observations collected on Au-
gust 7, 2022, at 07 UTC. These variables, observed across
multiple vertical atmospheric levels, are crucial for under-
standing weather phenomena, including precipitation fore-
casting.

As shown in Figure 3, the proposed model demon-
strates the capability to accurately reconstruct nonlinear and
highly variable parameters, such as rainfall. This achieve-
ment highlights the model’s ability to represent physical
flows in real-world meteorological datasets. The numeri-
cal model exhibits strong interdependence among variables,
even under a 90% masking ratio. The reconstructed out-
puts closely align with the ground truth, accurately cap-
turing complex variables such as relative humidity (RH)
and rainfall (RAIN), which are known for their significant
variability. Pre-training enables the model to infer context
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Figure 3. Variable reconstruction results using the pre-trained model on data from August 7, 2022, at 07 UTC. X , X̂ , and M denote input,
reconstructed input, and masked input, respectively. The subscripts (·) of variables and M represent the vertical levels and mask ratio,
respectively. The first row visualizes the normalized variables. Rows 2-4 show the results X̂ of reconstructing the masked pixels. Rows 5-7
visualize the variables with mask. For the visualization, the masked values were set to -100, and a range of [-1, 1] by conducting z-score.

from incomplete data, resulting in improved prediction ac-
curacy. However, higher masking percentages introduce
limitations, such as noticeable blurring in reconstructed val-
ues. For instance, surface temperature (T2), a key factor in
rainfall prediction, is sensitive to minor discrepancies, lead-
ing to reduced downstream performance. Excessive mask-
ing also restricts the model’s ability to learn robust repre-
sentations, causing it to rely on superficial patterns in train-
ing data and hindering generalization to unseen datasets. By
optimizing the masking ratio and leveraging pre-training ca-
pabilities, we aim to refine the reconstruction process while
preserving the model’s generalization performance.

D. Evaluation of components under different
rainfall patterns.

We evaluated our model’s practical applicability by ana-
lyzing the August 2022 data based on the four weather clus-
ters in the Republic of Korea proposed in prior research [2],
as shown in Figure 5. We extracted the components based
on empirical orthogonal function and then clustered them
using K-means clustering. The precipitation cases were
grouped into four clusters, containing 44, 633, 12, and 55
cases, respectively. We visualize the kernel density estima-
tion (KDE) of samples, representing the data’s probability
density function. Our results show that the predicted data
patterns were closer to the ground truth and were adjusted
to reflect the precipitation patterns better.



Figure 4. Weather clustering result on the RDAPS dataset.
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Figure 5. Evaluation of model’s practical applicability based
on the four weather clusters identified in the Republic of Korea
through KDE analysis.

E. Qualitative results

For qualitative analysis, three instances (Figure 6, 7,
and 8) of heavy rainfall events, which posed significant
challenges for RDAPS prediction, were selected. The first
row of each image depicts results obtained using tradi-
tional one-hot labeling, while the second row represents
outcomes achieved through probabilistic density labeling.
Unlike one-hot labeling, which tends to overfit specific
groups without considering the imbalanced data character-
istics, probabilistic density labeling offers greater flexibil-
ity across various groups, potentially mitigating data imbal-
ances. These findings are anticipated to address the com-
mon issue of data imbalance in real-world datasets, provid-
ing a methodology applicable to diverse imbalanced data.

Figure 6 illustrates instances where all AI models pre-

dicted rainfall spreading in all directions but failed to fore-
cast heavy rain inland. We present cases in which the pro-
posed method exhibits limited performance in precipita-
tion prediction and discuss the potential reasons behind this
outcome. We empirically observed that prediction models
struggle when sporadic showers rather than bands of rain
clouds. Sporadic showers often arise from the complex non-
linear dynamics of the atmosphere and terrain, presenting
irregular and intricate patterns that are challenging for mod-
els to learn. Rainfall patterns can significantly vary based on
geographical and seasonal factors in each region. By incor-
porating comprehensive atmospheric conditions and terrain
data, we can significantly enhance the accuracy of our re-
sults, enabling us to capture rainfall’s diverse characteristics
effectively.

QPE(GT) ConvLSTM Metnet MAE Swin-Unet PostRain. Ours

ConvLSTM* Metnet* MAE* Swin-Unet* PostRain.* Ours*RDAPS

Figure 6. Cluster 1. Visualization result between benchmarks
on August 15 2022 at 18 UTC (+28 h). As the stationary front
moved southward, cold air from the northwest was advected into
the upper atmosphere. At the same time, near the surface, abun-
dant moisture remained due to recent rainfall, leading to a rise in
temperature. This resulted in atmospheric instability due to the
temperature difference between the upper and lower levels, lead-
ing to sporadic showers, characteristic of a typical localized pre-
cipitation event. Due to significant variations in rainfall intensity
and amount within regions, ranging from several minutes to hours,
prediction becomes challenging. High-resolution NWP models
with temporal-spatial scales are required to accurately predict such
concentrated heavy rainfall. * denotes that probabilistic density la-
beling is applied.

Figure 7 and 8 show prediction outcomes for the precip-
itation correction. Areas marked in blue (Group 2) indicate
‘rain’ events in the [0.1, 10) mm range, and those marked
in red (Group 3) represent ‘heavy rain’ events above 10
mm. We observed that the RDAPS model captures both
precipitation ranges reasonably well, yet it only partially
successfully predicts regions that experienced ‘heavy rain.’
Without the labeling, the ConvLSTM, Metnet, MAE, Swin-
Unet, PostRainBench, and our model could not accurately
detect both precipitation ranges. In contrast, when proba-
bilistic density labeling was applied. The benchmark and
our models could predict precipitation patterns reasonably



well when RDAPS captured the location of precipitation
well, as shown in Figure 7. As illustrated in Figure 8, while
the benchmark models exhibited errors in targeting precip-
itation away from the core when RDAPS failed to capture
precipitation effectively, our model demonstrated improved
performance and robustness in addressing these positional
errors. Through analysis, we observed that our model lever-
ages deformable convolution by flexibly aggregating neigh-
borhood pixels to learn representations. Using hierarchi-
cal deformable convolution layers contributes to mitigating
positional errors in RDAPS, suggesting that this approach
can effectively enhance prediction accuracy in such cases.
Notably, in Figure 8, our model can accurately predict the
narrow core of heavy rain occurring inland, closely resem-
bling the ground truth. The results also indicate robust-
ness against precipitation cases with high uncertainty, typi-
cal during the summer season in the Korean Peninsula.

QPE(GT) ConvLSTM Metnet MAE Swin-Unet PostRain. Ours

ConvLSTM* Metnet* MAE* Swin-Unet* PostRain.* Ours*RDAPS

Figure 7. Cluster 2. Visualization result between benchmarks on
August 7, 2022, at 00 UTC (+27 h). * denotes that probabilistic
density labeling is applied.

QPE(GT) ConvLSTM Metnet MAE Swin-Unet PostRain. Ours

ConvLSTM* Metnet* MAE* Swin-Unet* PostRain.* Ours*RDAPS

Figure 8. Cluster 3. Visualization result between benchmarks on
August 8 2022 at 12 UTC (+29 h). * denotes that probabilistic
density labeling is applied.
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