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In this supplementary document, we report the additional
experimental results and analyses that are not included in
the main paper due to page limit. In Sec. A, we describe the
implementation details, including the precise architectural
modifications for multi-frame settings. In Sec. B, we study
an alternative symmetric form of KL divergence. In Sec. C,
we show the full quantitative results for various types of fo-
cal consistency loss, and demonstrate the effectiveness and
generalizability of our method. In Sec. D, we provide an
additional ablation study on the FCL weight hyperparam-
eters. In Sec. E, we show the ablation study on different
mini-batch configurations and justify our chosen hyperpa-
rameters. In Sec. F, we show the examples of the difficult
corner cases and analyze the results. Lastly, In Sec. G, we
demonstrate additional qualitative results.

A. Implementation Details
Multi-frame Architecture Details. For both baseline AF
models, we minimize the architectural modifications for the
model to be able to receive multi-frame inputs. For the
AFPE baseline [4], the multi-frame input is constructed by
concatenating the input data channel-wise. Let us denote
the single-frame dual-pixel input data as D ∈ R5×H×W ,
where H = W = 128 since we use 128 × 128 patches for
training and validation. The 5 channels consist of L/R/f/x/y,
where the meaning of each channel is as follows:

• L: left pixels of the dual-pixel data

• R: right pixels of the dual-pixel data

• f: Lens-PE (position encoding) of the current focal in-
dex; the value of f is a single scalar of 0 ∼ 1, but
spatially broadcasted as in [4]

• x: relative coordinates on the x-axis w.r.t. the full im-
age (RoI-PE)

• y: relative coordinates on the y-axis w.r.t. the full im-
age (RoI-PE)

Note that, out of 5 channels, only 3 (L/R/f) are modified
w.r.t. lens movements, and the relative coordinates of the

RoI (x/y) do not change. Therefore, for a multi-frame set-
ting with m frames, we can build (3m + 2)-channel in-
put tensor (instead of 5m channels) to fully represent the
multi-frame data, resulting in D ∈ R(3m+2)×128×128. For
the model architecture, only the first convolution layer is
modified accordingly to match the different multi-frame
input shape; for instance, Conv2d(in channel=5,
out channel=32) for D1 would become Conv2d(8,
32) for D2). Likewise, for I2 ∼ I5 settings, we use con-
ventional single-channel raw pixel data instead of L/R dual-
pixel, resulting in (2m + 2) × 128 × 128 input shape and
2m+ 2 input channels for the first convolution layer.

For the L2A baseline [9], the input data shape for the
D1 setting is already 98 × 128 × 128, where the 98 chan-
nels come from 49 discrete lens positions for the full fo-
cal stack, for dual-pixel L/R data (49 × 2). Since L2A al-
ready has placeholders for all lens positions and only the
observed frames are activated (others filled with zeros), it
is straightforward to apply multi-frame inputs to the L2A
baseline without any architecture modifications.

Training Details. Our model is implemented using Py-
Torch [45] and trained for 60k iterations using a mini-batch
size of 128, where each mini-batch consists of 32 scenes
each with 4 different focal indices. We used the Adam opti-
mizer [40] with an initial learning rate of 0.001, momentum
hyperparameters (β1, β2) = (0.5, 0.999), and weight decay
0.0001. We used the cosine learning rate scheduler [42] for
decaying the learning rate.

Following the previous works, all baseline models are
trained with the ordinal regression loss [8]. The proposed
models are trained using Eq. (9), where the consistency
weights λKLD and λMSD tuned for each model (see Sec. D).
In addition, we employed FCL after 30k training iterations
(half of the full training schedule) to improve training con-
vergence, since enforcing the intra-scene prediction consis-
tency is more meaningful if the prediction model is accurate
enough.

For the multi-frame models, we use the same training
scheme as described above. We always obtained the consec-
utive input frames in increasing order (e.g. fi, fi+1 for D2,
if we start at fi), and channel-wise concatenate the frames to
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build the multi-frame input data. We acknowledge that us-
ing some simple additional cue for deciding the multi-frame
search direction—whether to obtain the consecutive frames
in increasing order or decreasing order—may reduce the
overall lens movements in cases when the GT focal index
is at the opposite side of the initial search direction. How-
ever, we decided that designing such cues is out of scope of
the main idea in this paper and choose the increasing order
to simplify our presentation. Also, when we first open the
camera app in an Android smartphone (e.g. Google Pixel
3, Samsung Galaxy A54, Samsung Galaxy S22 Ultra), we
found that the lens position always started from f0, which
makes the initial increasing search direction correct.

B. Alternative Symmetrization of KLD
In this section, we explore an alternative symmetrization

of the Kullback-Leibler divergence, known as the Jensen-
Shannon Divergence (JSD), and present the corresponding
results and analysis.

Previously, in Sec. 3.1 of the main paper, we introduced
a symmetric version of the KL divergence Eq. (3), which
is referred to as the Jeffreys divergence [43]. Now, we turn
our attention to the JSD [41], another symmetrization of the
KLD. The JSD is computed as follows:

LJSD =
1

2
(DKL (p(fi) ∥ m) +DKL (p(fj) ∥ m)) ,

where m =
p(fi) + p(fj)

2
.

(1)

Note that unlike the Jeffreys divergence, the JSD is
bounded, a property derived from [44]:

DKL (p(fi) ∥ m) =

n∑
k=1

pk(fi) log
2pk(fi)

pk(fi) + pk(fj)

≤
n∑

k=1

pk(fi) log
2pk(fi)

pk(fi)
= log 2.

Experiments were conducted using the JSD on AFPE [4].
The results are presented in Tab. A for dual-pixel and con-
ventional images. For comparison, the results using the
MSD, KLD, and FCL are also shown. While JSD yields
comparable results, we can observe that the Jeffreys diver-
gence (denoted as +KLD) performs better most of the time,
which is why we chose the Jeffreys divergence as our final
symmetric form of KL-Divergence.

We believe this slight performance gap can be attributed
to the fact that while the Jeffreys divergence calculates the
KL divergence between the original distributions p(fi) and
p(fj), the JSD computes the KL divergence with respect to
the average distribution m =

p(fi)+p(fj)
2 . As the average

distribution tends to be smoother, the JSD may result in a
smoother distribution than the Jeffreys divergence. On the

Alg. Type MAE RMSE MSD* TV

AFPE

D1

1.760 2.855 1.338 0.895
+MSD 1.739 2.782 1.175 0.780
+JSD 1.724 2.692 1.220 0.825
+KLD 1.736 2.787 1.130 0.737
+FCL 1.735 2.744 1.070 0.691

AFPE

D2

1.656 2.593 1.161 0.606
+MSD 1.608 2.468 1.049 0.538
+JSD 1.573 2.484 1.061 0.552
+KLD 1.582 2.539 1.001 0.511
+FCL 1.577 2.466 0.968 0.488

AFPE

D3

1.542 2.421 1.073 0.496
+MSD 1.495 2.346 0.951 0.428
+JSD 1.516 2.352 1.005 0.450
+KLD 1.488 2.382 0.923 0.398
+FCL 1.522 2.350 0.884 0.376

AFPE

D4

1.516 2.351 1.003 0.420
+MSD 1.481 2.316 0.929 0.358
+JSD 1.485 2.320 0.967 0.392
+KLD 1.456 2.296 0.916 0.356
+FCL 1.434 2.279 0.868 0.319

AFPE

D5

1.456 2.236 0.954 0.368
+MSD 1.455 2.271 0.911 0.332
+JSD 1.468 2.239 0.930 0.350
+KLD 1.439 2.259 0.852 0.306
+FCL 1.431 2.226 0.833 0.290

AFPE† D* 1.356 2.128 - -

Type MAE RMSE MSD* TV

I1

3.629 6.083 3.947 1.534
3.570 6.019 3.631 1.407
3.461 5.830 3.695 1.424
3.533 5.898 3.471 1.285
3.506 5.902 3.356 1.246

I2

2.547 4.358 2.647 1.401
2.460 4.134 2.296 1.249
2.476 4.206 2.340 1.324
2.461 4.078 2.265 1.240
2.491 4.210 2.204 1.188

I3

2.222 3.705 2.097 1.151
2.189 3.657 1.907 1.006
2.097 3.530 1.914 1.025
2.156 3.572 1.864 1.010
2.110 3.519 1.779 0.928

I4

1.990 3.299 1.814 0.935
1.987 3.254 1.749 0.871
1.917 3.163 1.718 0.881
1.933 3.160 1.604 0.794
1.958 3.202 1.557 0.790

I5

1.883 3.081 1.681 0.825
1.878 3.032 1.538 0.723
1.798 2.976 1.545 0.752
1.805 3.001 1.499 0.705
1.801 2.959 1.484 0.703

I* 1.550 2.399 - -

Table A. Quantitative results for multi-frame settings with dual-
pixel (D1 ∼ D5) and conventional-image (I1 ∼ I5) using AFPE
[4] baseline and the proposed MSD, JSD, KLD, and FCL. The
top three methods for each metric are highlighted in red, orange,
and yellow, respectively. We can observe that our FCL notably
improves the consistency metrics MSD* and TV for all settings
while preserving the accuracy. A † indicates that values are from
the reference article.

other hand, the Jeffreys divergence has the potential to pro-
duce sharper distributions, which could be more effective in
representing diverse scenes.

C. Additional Quantitative Results

In Tab. A, we present the complete quantitative results
for both dual-pixel and conventional image inputs for the
AFPE baseline, including various types of the proposed
FCL and the multi-frame setting. It is evident that all types
of FCL (MSD, JSD, KLD, and the mixed FCL) significantly
surpass the baseline AFPE performance on the consistency
metrics (MSD*, TV), while maintaining or even improving
the accuracy metrics (MAE, RMSE) in most cases.

Figure A illustrates the improvements in AF accuracy
(MAE, RMSE) and consistency (MSD*, TV) for the dual-
pixel settings D1 ∼ D5 (first row) and the conventional-
image settings I1 ∼ I5 (second row) w.r.t. the number of
input frames for AFPE [4]. In general, all metrics improved
as we use more frames, and the proposed FCL, which is a
weighted combination of MSD and KLD, shows the best
performance. For I1 ∼ I5 settings, we can observe that us-
ing multiple frames particularly improves the overall accu-
racy (MAE) by a large margin. This is because a conven-
tional single-channel RAW image (I1) has very little infor-
mation about focus, while we can capture the pixel patterns



Figure A. AF accuracy and consistency comparisons w.r.t. the number of input frames for the baseline model AFPE [4] for different types
of FCL (1st row: D1 ∼ D5, 2nd row: I1 ∼ I5). The results prove the effectiveness of all types of FCL (MSD, JSD, KLD, and the combined
FCL).

Figure B. AF accuracy and consistency comparisons w.r.t. the number of input frames for the baseline model L2A [9] with the proposed
FCL (1st row: D1 ∼ D5, 2nd row: I1 ∼ I5). The results prove the effectiveness of FCL.

regarding depth if we use 2 or more frames. Also, all types
of focal consistency loss (MSD, JSD, KLD, and FCL) are
able to enhance the consistency metrics (MSD* and TV)
compared with the baseline AFPE, which proves the effec-

tiveness of the proposed FCL. Given that FCL does not in-
troduce any additional computation at the inference stage,
we can conclude that using FCL is always a considerable
choice when training a learning-based AF model.



Similar patterns can be observed in Fig. B if we change
the baseline model to L2A [9] (first row: D1 ∼ D5, sec-
ond row: I1 ∼ I5). We can observe that the overall ac-
curacy (MAE, RMSE) is consistently improved across all
problems when using the proposed FCL. Moreover, the im-
provement in the consistency metric (MSD*, TV) is sub-
stantial, highlighting the effectiveness of FCL in stabilizing
the AF model. This demonstrates that the proposed FCL
and multi-frame model are robust and effective, regardless
of the architectural modifications.

D. Quantitative Results for FCL weight

In Tab. B, we provide the full quantitative results of D1
problem for different values of weight parameters λMSD and
λKLD. This corresponds to the graphs in Fig. 6 of the main
paper, for λMSD = 4 (3rd column) and λKLD = 4 (5th row).
We can observe that the overall accuracy metrics (MAE,
RMSE) maintain a satisfactory level for a certain range of
λMSD and λKLD. We selected λMSD = 4 and λKLD = 4 for
AFPE+FCL, which enhances the MSD* without sacrificing
the accuracy metric MAE. For all other settings (D2 ∼ D5,
I1 ∼ I5), we selected different λMSD and λKLD for each set-
ting following the same process.

E. Effects of Mini-batch Configuration

During the training phase, we randomly selected 4 dis-
tinct focal indices for each of the 32 scenes, creating a mini-
batch of size 128. While keeping the batch size fixed, the
number of different focal indices, denoted as F , can po-
tentially influence the overall performance; when a smaller
F is employed, the model can capture more diverse scenes
within each batch. This could potentially enhance the gen-
eralization performance and enable robust learning of the
features. Conversely, using a larger F enables the model
to grasp more diverse views of the same scene. This could
lead to a more comprehensive understanding of intra-scene
geometric information. To investigate this, we conducted a
series of experiments aimed at evaluating the effect of the
parameter F , and the results are presented in Tab. C.

Note that the baseline method AFPE [4] in the reference
article used a batch size of 128 with all different scenes
(F = 1). The values from the original reference is marked
with a †, and we can observe that our reproduced model for
D1 shows similar results. We first conducted experiments
for the reproduced version of AFPE with F = 1, 2, 4, 8
(rows 2 ∼ 5) while keeping the batch size equal to 128,
hence resulting in 128, 64, 32, 16 different scenes in a mini-
batch, respectively. The results indicate that F = 4 provides
the highest accuracy metric (MAE), suggesting that F = 4
is the optimal choice for capturing diverse scene and intra-
scene information. Note that the consistency metric MSD*
is not affected by F , since the FCL is not utilized yet.

We then experimented with the AFPE model utilizing
FCL, adjusting F = 2, 4, 8 (rows 6 ∼ 8). For F = 4,
we used parameters λMSD = 4 and λKLD = 4. When F
was changed, we adjusted the parameters to maintain simi-
lar weights. This is because KLD is computed by summing
over all possible pairs for each scene. Specifically, F = 2
has

(
2
2

)
= 1 pair, F = 4 has

(
4
2

)
= 6 pairs, and F = 8 has(

8
2

)
= 28 pairs. Therefore, the corresponding λKLD values

are λKLD = 4 ∗ 6 for F = 2 and λKLD = 4 ∗ 6/28 ≒ 0.857
for F = 8. Note that λMSD is computed as the standard de-
viation of sets, hence the same weight λMSD = 4 is used for
all F .

The results show that F = 4 is also the optimal choice
for both AF accuracy and focal consistency, as it demon-
strates the best performance in terms of all metrics (MAE,
RMSE, MSD*, and TV). Note that AFPE+FCL outper-
forms the corresponding baseline AFPE, especially in terms
of consistency. This further proves the effectiveness of our
FCL, regardless of changes in hyperparameter F .

F. Corner Case Analysis
We provide qualitative examples for the challenging cor-

ner cases that the existing baseline typically fails to han-
dle. We show the input image, baseline AFPE output,
AFPE+FCL (D1), AFPE+FCL (D5), and the ground truth
image, in order.

Figure C shows the example scenes with multiple depths.
We can observe that these scenes either have two (or more)
objects or a distinct foreground and background. Although
the baseline AFPE usually finds the correct focus, such dis-
tinct regions can make the model confused and lead to the
predictions oscillating between the foreground focus and
the background focus. On the other hand, our FCL and the
multi-frame results can clearly give more stable outputs.

Figure D shows the dark and noisy scenes. These chal-
lenging examples usually occur in low-light environments,
and the low signal-to-noise ratio of the input image is one
of the most difficult corner case for an AF model to tackle.
AFPE+FCL models, while not perfect, demonstrate robust
predictions for these dark and noisy scenes, compared with
the original baseline.

Figure E shows the examples with nearby objects. As
these objects are close to the camera, taking an exact macro
shot can be challenging. The baseline AFPE model tends to
produce wide-angle shots. On the other hand, by leveraging
intra-scene geometric information, our FCL methods can
precisely capture the nearby objects.

Figure F depicts the saturated or textureless scenes,
which can occur in bright conditions or when photograph-
ing smooth objects. Measuring sharpness in these cases is
difficult, making it hard for the baseline model to predict
focus. However, our FCL methods can effectively capture
the subtle cues in these challenging scenes.



λ
λMSD = 0 λMSD = 2 λMSD = 4 λMSD = 6 λMSD = 8 λMSD = 10

MAE MSD* MAE MSD* MAE MSD* MAE MSD* MAE MSD* MAE MSD*

λKLD = 0 1.760 1.338 1.764 1.279 1.762 1.250 1.739 1.175 1.776 1.197 1.761 1.147
λKLD = 1 1.695 1.220 1.740 1.188 1.756 1.162 1.771 1.143 1.791 1.126 1.748 1.105
λKLD = 2 1.712 1.171 1.730 1.148 1.752 1.129 1.774 1.109 1.773 1.089 1.763 1.063
λKLD = 3 1.722 1.143 1.736 1.124 1.729 1.091 1.764 1.082 1.787 1.064 1.762 1.044
λKLD = 4 1.736 1.130 1.746 1.107 1.735 1.070 1.750 1.058 1.810 1.054 1.786 1.028
λKLD = 5 1.729 1.102 1.743 1.078 1.760 1.058 1.774 1.043 1.789 1.029 1.801 1.020

Table B. Quantitative results of D1 setting for different values of λMSD and λKLD using AFPE [3] baseline and proposed FCL. The top
two methods for each metric are highlighted in red and orange. We can observe that FCL notably improves the consistency metric MSD*
without sacrificing the accuracy metric.

Algorithm Type F λMSD λKLD MAE RMSE MSD* TV

AFPE† [3]

D1

1 - - 1.803 2.826 - -
AFPE 1 0 0 1.824 2.821 1.347 0.859
AFPE 2 0 0 1.833 2.804 1.362 0.880
AFPE 4 0 0 1.760 2.855 1.338 0.895
AFPE 8 0 0 1.851 2.919 1.342 0.886

AFPE+FCL
D1

2 4 24 1.782 2.799 1.121 0.723
AFPE+FCL 4 4 4 1.735 2.744 1.070 0.691
AFPE+FCL 8 4 0.857 1.908 2.983 1.138 0.741

Table C. Quantitative comparison for different number of focal indices F using AFPE [4] baseline, and the proposed FCL. The top method
for each metric is highlighted in red. For both the AFPE and AFPE+FCL models, F = 4 is the optimal choice. For each F , the model
with FCL outperforms the corresponding baseline AFPE. A † indicates that values are from the reference article.

G. Additional Qualitative Results

In this section, we provide additional qualitative results
demonstrating the effectiveness and reliability of our pro-
posed FCL and multi-frame settings.

Figures G and H show qualitative comparisons of
our proposed FCL with the baseline AFPE [4], for the
D1 (single-slice, dual-pixel) and I1 (single-slice, single-
channel) settings, respectively. Figures I and J show qual-
itative comparisons of our proposed FCL with the baseline
L2A [9], for the D1 and I1 settings, respectively. As the left-
most graphs illustrate, the output focal indices of the base-
line are not particularly consistent for the given input focal
slices. We can also observe that if the prediction of baseline
at the GT focal index is wrong, the baseline model suffers
from focus hunting problems. On the other hand, by using
our proposed FCL, the output focal indices become signif-
icantly more consistent, almost perfectly solving the focus
hunting problems. The visualized patches also demonstrate
the effectiveness of FCL for AF.

Figures K and L show additional qualitative comparisons
for AFPE+FCL with different multi-frame settings (D1, D3,
D5) and (I1, I3, I5), respectively. Figures M and N show
additional qualitative comparisons for L2A+FCL with dif-
ferent multi-frame settings (D1, D3, D5) and (I1, I3, I5), re-
spectively. Notably, we demonstrate more challenging sce-
narios when our D1 model fails to predict consistent pre-
dictions even if it is trained with the FCL. For such difficult

cases, including scenes with multiple depths or severe noise,
using our multi-frame settings could substantially enhance
the prediction consistency, resulting in stable performance.
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Figure C. Scenes with multiple depths

Figure D. Dark and Noisy scenes

Figure E. Near scenes



Figure F. Saturated or Textureless scenes



Figure G. Qualitative comparison our proposed FCL methods with the AFPE [4] baseline for D1 (single-slice, dual-pixel) setting. The
leftmost graph illustrates the output focal index predictions for each input focal slice. AFPE in these cases encounter focus hunting, whereas
FCL methods show more consistent predictions. The red numbers in each patch indicate the focal index.



Figure H. Qualitative comparison our proposed FCL methods with the AFPE [4] baseline for I1 (single-slice, single-channel) setting.
The leftmost graph illustrates the output focal index predictions for each input focal slice. AFPE in these cases encounter focus hunting,
whereas FCL methods show more consistent predictions. The red numbers in each patch indicate the focal index.



Figure I. Qualitative comparison our proposed FCL methods with the L2A [9] baseline for D1 (single-slice, dual-pixel) setting. The
leftmost graph illustrates the output focal index predictions for each input focal slice. L2A in these cases encounter focus hunting, whereas
FCL methods show more consistent predictions. The red numbers in each patch indicate the focal index.



Figure J. Qualitative comparison our proposed FCL methods with the L2A [9] baseline for I1 (single-slice, single-channel) setting. The
leftmost graph illustrates the output focal index predictions for each input focal slice. L2A in these cases encounter focus hunting, whereas
FCL methods show more consistent predictions. The red numbers in each patch indicate the focal index.



Figure K. Qualitative comparison of results from AFPE+FCL with different multi-frame settings: D1, D3, and D5. The left graph shows
that, while our FCL enhances prediction consistency, using only a single slice input (D1) may sometimes produce false answers for
challenging scenes. Our multi-frame models (D3, D5) can alleviate this issue and stably converge near the GT, as shown in the right.



Figure L. Qualitative comparison of results from AFPE+FCL with different multi-frame settings: I1, I3, and I5. The left graph shows that,
while our FCL enhances prediction consistency, using only a single slice input (I1) may sometimes produce false answers for challenging
scenes. Our multi-frame models (I3, I5) can alleviate this issue and stably converge near the GT, as shown in the right.



Figure M. Qualitative comparison of results from L2A+FCL with different multi-frame settings: D1, D3, and D5. The left graph shows that,
while our FCL enhances prediction consistency, using only a single slice input (D1) may sometimes produce false answers for challenging
scenes. Our multi-frame models (D3, D5) can alleviate this issue and stably converge near the GT, as shown in the right.



Figure N. Qualitative comparison of results from L2A+FCL with different multi-frame settings: I1, I3, and I5. The left graph shows that,
while our FCL enhances prediction consistency, using only a single slice input (I1) may sometimes produce false answers for challenging
scenes. Our multi-frame models (I3, I5) can alleviate this issue and stably converge near the GT, as shown in the right.
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