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1. Outline
In our main paper, we utilize a unified model called

uLayout, which is capable of being jointly trained on both
perspective and panoramic domain data, enabling it to accu-
rately estimate boundaries within the image compared with
two panoramic layout estimation models, LGT-Net [3] and
DOP-Net [5] and two perspective layout estimation models,
LSUN-ROOM [4] and FUSING [7]. Additionally, our de-
sign incorporates optimizations to minimize time, memory
usage, and Floating-Point Operations (FLOPs) specifically
within the perspective domain. In this supplementary mate-
rial, we provide more details in the following sections:

• In the ablation study section of our main paper, we
mention that the horizon depth becomes infinite when
boundaries extend across the middle of the image. In
Sec. 2, we will delve into more details regarding the
mechanism by calculating the horizon depth and dis-
cuss its limitations.

• In Sec. 3, we will provide the experiment with
ZInD [2] and LSUN [6] dataset.

• In Sec. 4, we will present the different experiment set-
tings to evaluate the benefit of adding extra training
data and a joint training approach.

• In Sec. 5, we will present additional qualitative re-
sults showcasing panoramic images sourced from the
three datasets we evaluated in the paper, PanoCon-
text [8], Standford 2D-3D [1] and MatterportLayout
dataset [9], as well as perspective images captured
with varying Field-of-View (FoV) from the LSUN
dataset [6].

2. Calculation of Horizon Depth
In this section, we will delve into the intricacies of pro-

Figure 1. Illustration of calculating Horizon Depth

jecting boundaries onto a bird’s-eye view and calculating
horizon depth. We operate under the assumption that there
exists one ceiling and one floor plane, both perpendicular to
the walls.

In Fig. 1, we take p1 as a point on the floor boundary and
p2 as the horizon point in the middle of the image, provid-
ing two examples for clarity. To begin, we project point p1,2
from the image space to unit-spherical coordinates, yield-
ing xp1,2 , yp1,2 , and zp1,2 respectively. Subsequently, by
focusing on p1 and leveraging the similarity between tri-
angles △Op1A and △Op1′B, we can determine the hori-
zon depth Dhorizon using the relationship expressed in Equa-
tion Eq. (1):

Dhorizon√
x2
p + z2p

=
Ch

yp
(1)

Here, Ch denotes the camera height, while p signifies any
arbitrary point within the image space.

However, in the case of p2, where yp2
equals zero, the

calculation of Dhorizon becomes infinite according to Equa-
tion Eq. (1). Consequently, we are unable to project p2 onto
the bird’s eye view plane and compute the Intersection over
Union (IoU). In our main paper, to mitigate this issue, we
employ vertical shifting to prevent ceiling or floor bound-
aries from crossing the middle of the image.



3. Experiment Results with ZInD dataset
In this section, we present the experimental results of

uLayout on the ZInD dataset [2], trained jointly with the
LSUN dataset [6]. We also compare these results against
two state-of-the-art panoramic baselines, LGT-Net [3] and
DOP-Net [5], as well as two leading perspective-based
methods, LSUN-ROOM [4] and FUSING [7].

In Tab. 1, when compared to the two panoramic base-
lines, uLayout achieves the same 3D IoU as DOP-Net [5],
although its 2D IoU is slightly lower. Moreover, our
model demonstrates over a 35% improvement in perfor-
mance compared to the two panoramic baselines in per-
spective. As for the two perspective baselines, uLayout sur-
passes them in ceiling 2D IoU, but its floor 2D IoU falls
short of FUSING [7]. This performance discrepancy can be
attributed to two primary factors. First, the ZInD dataset [2],
with over 25,000 panoramic images—nearly ten times the
size of the LSUN dataset [6]—causes the model to learn
predominantly from the panoramic domain. Second, while
the ZInD dataset contains complex room layouts, the im-
ages lack furniture, allowing for clearer room structures. In
contrast, the LSUN dataset is filled with furniture, which
frequently occludes room layouts. This domain gap be-
tween the two datasets impacts the model’s generalization,
particularly in tasks like floor 2D IoU, where occlusions
play a significant role.

Table 1. Experiment with ZInD [2] and LSUN [6] datasets.

ZInD [2] LSUN [6]

Ceiling Floor
Method 2DIoU 3DIoU 2DIoU 2DIoU

LGT-Net [3] 91.77 89.95 45.47 37.70
DOP-Let [5] 91.94 90.13 1.49 3.32

LSUN-ROOM [4] - - 76.59 73.62
FUSING [7] - - 80.68 80.03

Ours 91.83 90.14 83.56 79.72

4. Discussion for Additional data and Joint
Training

In this section, we explore four different training settings
to demonstrate the benefits of incorporating additional per-
spective data and using a joint training approach on the Mat-
terportLayout [9] and LSUN [6] datasets. These settings are
(a) training solely on MatterportLayout [9] panoramic data,
(b) training on both MatterportLayout [9] panoramic data
and perspective views extracted from these panoramas, (c)
training on LSUN [6] perspective data using a pre-trained
model that was initially trained on MatterportLayout [9]

panoramic data, and (d) jointly training on both Matterport-
Layout [9] and LSUN [6] datasets.

In Tab. 2, comparing methods (a), (b), and (c), we
find that joint training with perspective data derived from
masked panoramic images, without adding new informa-
tion such as LSUN [6] data, does not improve performance.
This indicates that simply combining panoramic and per-
spective data is not sufficient to boost results. However, the
introduction of new training data, as seen in method (d),
significantly enhances performance in both domains. Addi-
tionally, comparing methods (c) and (d) shows that training
panoramic and perspective data separately cannot achieve
the same results as joint training. This highlights that both
the inclusion of new training data and the joint training ap-
proach are essential for improving performance across both
domains.

Table 2. Ablation Study with MatterportLayout [9] and LSUN [6]
datasets.

MatterportLayout [9] LSUN [6]

Ceiling Floor

Method 2D IoU 3D IoU 2D IoU 2D IoU

(a) only pano 83.08 80.83 3.96 0.57

(b) pano + pers(masked pano) 82.56 80.20 55.68 61.15

(c) pretrain pano + pers(LSUN) 76.11 73.55 80.95 76.55

(d) pano + pers(LSUN) 84.05 81.84 83.61 80.25

5. Qualitative Results

In this section, we will present additional qualitative ex-
amples of panoramic images compared to two panorama
baselines, DOP-Net [5] and LGT-Net [3]. We will also
provide 3D visualization examples for panoramic images
to illustrate our model’s capabilities. Additionally, we
will showcase original data with different Field-of-View
(FoV) sourced from LSUN dataset [6] as the original im-
age, the original image after preprocessing as input image,
our model’s prediction, and predictions from two perspec-
tive layout models, FUSING [7] and LSUN-ROOM [4].

Qualitative Results on Panoramic Images.

In Figs. 2 to 4, we present additional qualitative results
for panoramic images from PanoContext [8], Stanford 2D-
3D [1] and MatterportLayout [9]. Panel (a) displays the
predictions made by our model and panel (b) shows the
predictions made by DOP-Net [5], while panel (c) shows
the predictions made by LGT-Net [3]. In Figs. 5 to 7, we
provide 3D visualization for panoramic images from three
different datasets.



Qualitative Results on Perspective Images.

In Fig. 8, we present additional qualitative results dis-
playing perspective images with various Field-of-View
(FoV) sourced from the LSUN dataset [6]. Panel (a)
exhibits the original images sourced from the LSUN
dataset [6].

To ensure visual clarity, we adjust the original image’s
height and width to maintain a consistent image height
while preserving the aspect ratio of height and width. Panel
(b) showcases the input images, which are the original im-
ages after preprocessing. Panel (c) displays our model’s
predictions. Panels (d) and (e) present predictions from
two perspective layout model baselines, FUSING [7] and
LSUN-ROOM [4], respectively.
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Figure 2. Qualitative Results for Panoramic Images from PanoContext [8] dataset. Red lines denote the ground truth layout. Cyan lines
denote the predicted layout.

Figure 3. Qualitative Results for Panoramic Images from Stanford 2D-3D [1] dataset. Red lines denote the ground truth layout. Cyan
lines denote the predicted layout.



Figure 4. Qualitative Results for Panoramic Images from MatterportLayout [9] dataset. Red lines denote the ground truth layout. Cyan
lines denote the predicted layout.



Figure 5. 3D visualization for Panoramic Images from PanoContext [8] dataset. Red lines denote the ground truth layout. Cyan lines
denote the predicted layout.

Figure 6. 3D visualization for Panoramic Images from Stanford 2D-3D [1] dataset. Red lines denote the ground truth layout. Cyan lines
denote the predicted layout.

Figure 7. 3D visualization for Panoramic Images from MatterportLayout [9] dataset. Red lines denote the ground truth layout. Cyan lines
denote the predicted layout.



Figure 8. Qualitative Results for Perspective Images. Red lines denote the ground truth layout. Cyan lines denote the predicted layout.


	. Outline
	. Calculation of Horizon Depth
	. Experiment Results with ZInD dataset
	. Discussion for Additional data and Joint Training
	. Qualitative Results

