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A. Details on Drone Detection Datasets

In the field of image-based drone detection, diverse
datasets have been established, each defined by specific at-
tributes and features tailored to distinct application contexts
and objectives (see also Table I). Complementing the infor-
mation in Section 2.2 (main paper), Table I and the subse-
quent sections offer a more comprehensive exploration of
the distinctive properties of each dataset.

USC Drone Detection and Tracking. The USC Drone
Detection and Tracking dataset [0,25] consists of 30 videos,
each with a resolution of 1920x 1080 pixels. Recorded at
a frame rate of 15 FPS and an approximate duration of
one minute per video, the dataset contains approximately
27,000 images. The videos were captured on the Univer-
sity of Southern California (USC) campus, featuring a wide
variety of backgrounds, camera angles, drone appearances,
and diverse weather and lighting conditions. Only a single
drone model (DJI Phantom) was used for data generation.

Drone Dataset by [2]. The Drone Dataset, provided
by Aksoy et al. [2], comprises approximately 4,000 an-
notated RGB images sourced from YouTube drone videos
and Google image searches. These images exhibit a reso-
lution range from 300x 168 to 38402160 pixels (4K) and
exclusively feature DJI Phantom drones. The dataset also
includes images of various non-drone objects.

MAV-VID. The Multirotor Aerial Vehicle VID (MAV-
VID) dataset by Rodriguez-Ramos et al. [21] comprises 64
videos (i.e., 40,232 images) of single drones. The videos are
captured in various setups using different recording tech-
niques, including handheld mobile devices, ground-based
surveillance cameras, and other drones [15]. The average
drone size within the dataset is 13677 pixels.

Det-Fly. The Det-Fly dataset by Zheng et al. [28] fo-
cuses on air-to-air visual detection of micro UAVs and com-
prises 13,271 high-resolution images (3840x2160 pixels).

The images, captured by another UAV, were sourced from
videos at a sampling rate of 5 FPS or taken from selected
positions. They feature diverse environmental backgrounds
(sky, urban, field, mountain) and perspectives (front, top,
bottom) based on relative viewing angles. Despite the con-
siderable variability in drone size, with nearly half of the
drones occupying less than 5% of the total image area,
the dataset exclusively covers a single drone model (DJI
Mavic).

UAV-Eagle. The UAV-Eagle dataset [3] is designed to
evaluate the effectiveness of drone detection algorithms un-
der varying conditions, including diverse illumination set-
tings, motion artifacts, and viewpoint alterations. It com-
prises 510 annotated images featuring complex environ-
ments characterized by diverse background objects (e.g.,
trees, buildings, clouds, vehicles, and people). Employing
a UAV-mounted camera for data collection, the dataset in-
cludes aerial images of both single- and multi-drone scenar-
ios; however, limited to the Eagle quadcopter model.

UAVData. Zeng et al. [26] introduce UAVData, a dataset
designed for visual drone detection, consisting of 13,803
manually recorded and annotated RGB images with a reso-
lution of 1280x 720 pixels. The UAVData dataset captures
a diverse array of real-world environments, encompassing
both indoor settings (e.g., workshops and laboratories) and
outdoor scenes featuring distinct background compositions
(e.g., sky, trees, and buildings). This dataset aims to address
the challenges inherent in real-world scenarios by incorpo-
rating rapid illumination changes, complex scenarios, and
blurring effects caused by high-speed motion. In addition
to six common drone models, UAVData includes balloon
distractors, thus yielding 7,320 uni-drone images, 4,346
multi-drone images, and 2,137 balloon images. Drone sizes
within the images range from 5x23 to 720x303 pixels.

Halmstad Data. The Halmstad Dataset, developed by
Svanstrom et al. [24], is a multi-sensor dataset for drone de-



Table 1. Overview of additional characteristics of publicly available datasets for image-based drone detection. The symbols X (does not
apply) and v (applies) indicate the designated computer vision (CV) task — detection (detect) and / or tracking (track) — the represented
drone types (multicopter and / or fixed-wing), and the camera configurations (static and / or moving).

Dataset CV Task Objective Drone Type Camera Config.
detect | track multicopter | fixed-wing | static | moving
USC Drone Detect. & Track. [6,25] v v drone monitoring v X v e
Drone Dataset [2] Ve X drone detection e X - -
MAV-VID [21] v v drone detection v X v v
detection of micro-
Det-Fly [28] v X UAVs v X - -
UAV detection in
UAV-Eagle [3] Ve v unconstrained envi- v X e X
ronments
UAVData [26] v v | UAV detection v X v X
Halmstadt Data [24] v v d.rone detection at v X v v
airports
DUT Anti-UAV [27] v v anti-UAV detection v X v v
Malicious Drones [16] v X hazardous payload v X - -
drone detection
.. detection of unau-
VisioDECT [ 1] v X thorized UAVs v X v v
S-UAV-T [4] (synthetic) o X gglv'to'UAV detec- v X X v
. . distinction between
Drone-vs-Bird Detection Ch. [7] v v . v v v v
drones and birds
Anti-UAV [17] x | v is:égle VAV track- v v v
SynDroneVision (Ours, synthetic) v (v') | drone detection v v X

tection, with a specific focus on detecting small UAVs. The
dataset comprises 365 infrared (IR) and 285 visible light
(RGB) videos, each lasting 10 seconds, alongside audio
files. These recordings were primarily captured at airports
in Sweden (e.g., Halmstad Airport) under daylight condi-
tions. The dataset encompasses a variety of drone models
(including the Hubsan H107D, DJI Flame Wheel, and DJI
Phantom 4), as well as potential drone-like objects such as
birds and airplanes. In total, the dataset comprises 203,328
annotated frames (across both IR and RGB), categorizing
objects into the classes drone, bird, airplane, and helicopter.
However, the .mat format annotations are not directly com-
patible with most DL frameworks.

DUT Anti-UAV. The Dalian University of Technology
(DUT) Anti-UAV dataset [27] consists of two subsets: one
for detection and one for tracking. The detection dataset
includes 10,000 images, partially recorded in a sequential
manner. The image resolutions vary significantly, ranging
from 240x 160 to 5616x3744 pixels. Object sizes within
the images also exhibit substantial variation, with an aver-
age object area ratio of 0.013, indicating a high proportion
of small objects. DUT Anti-UAV features 35 different UAV

types for data generation and is characterized by a high di-
versity of scene information. It includes various outdoor
environments such as the sky, dark clouds, jungles, high-
rise buildings, residential buildings, farmland, and play-
grounds. Additionally, it encompasses diverse lighting set-
tings (day, night, dawn, and dusk) and weather conditions
(sunny, cloudy, and snowy days). In terms of object posi-
tioning, the majority of drones are located in the central area
of the image.

Malicious Drones. Jamil er al. [16] introduce the Ma-
licious Drones dataset, specifically designed for detecting
harmful drones (e.g., carrying hazardous payloads) and dif-
ferentiating them from other aerial entities. The dataset
comprises 776 images categorized into five classes: aero-
plane, bird, drone, helicopter, and malicious drone, with
drones (normal and malicious) accounting for approxi-
mately half of the dataset (~ 399 images). All images
are standardized to a resolution of 224 x224 pixels. The
dataset aims to address the complexity of real-world sce-
narios by including scenarios characterized by low illumi-
nation, reduced object visibility, occlusions, and adverse
weather conditions.



VisioDECT. The VisioDECT dataset [!] is a special-
ized aerial dataset designed for scenario-based detection
of unauthorized drones. It comprises 20,924 annotated
RGB images (852x480 pixels) recorded across three dis-
tinct scenarios: cloudy, sunny, and evening. The images
were captured at varying altitudes and locations, at dif-
ferent times, and under diverse climatic conditions, using
six distinct drone models: Anafi Extended, DJI FPV, DJI
Phantom, EFT-E410S, Mavic2-Air, and Mavic2-Enterprise
Zoom. The collected data was manually cleaned (excluding
images without drones) and annotated by domain experts.

S-UAV-T. The S-UAV-T dataset by Barisic et al. [4] is the
only publicly available synthetic dataset for drone — more
precisely UAV-to-UAV — detection. The dataset is gener-
ated via Blender [5] and the rendering engine Cycles [9],
with a particular emphasis on texture randomization. To re-
flect the diversity of real-world environments, the dataset
includes variations in drone models, the quantity of drones
per image, lighting conditions (daylight, partly cloudy, twi-
light), object scales, camera positions and angles, as well as
a range of unconventional textures. The dataset comprises
52,500 drone images with a resolution of 608 x 608 pixels.

Drone-vs-Bird Detection Challenge. The Drone-vs-Bird
Detection Challenge dataset [7] is a comprehensive, man-
ually annotated collection designed to assist in accurately
distinguishing drones from birds across a wide range of con-
ditions. It comprises 77 video sequences for training, each
averaging 1,384 frames, captured with both static and mov-
ing cameras at resolutions from 720x576 to 3840x2160
pixels. The dataset includes eight types of commercial
drones - three fixed-wing and five rotary-wing models
- recorded in diverse environments such as urban areas,
woodlands, agricultural fields, and maritime regions across
Central Europe and the Mediterranean. These videos fea-
ture different weather conditions and times of day, intro-
ducing challenges like direct sun glare and varying cam-
era characteristics. While drones are annotated, birds,
which frequently appear as primary disturbance, are not.
Drone sizes range from 15 pixels to over 1,000,000 pixels,
with most annotated drones being smaller than 32x32 pix-
els. The test set, comprises 30 additional video sequences
without annotations, featuring new backgrounds, additional
drone types, and other disturbing objects like planes.

Anti-UAV. The Anti-UAV dataset, created by Jiang et
al. [17], comprises 318 pairs of real RGB-T video se-
quences tailored for UAV tracking. Each pair features both
RGB and thermal IR modalities, capturing a broad spectrum
of lighting conditions (day and night) and diverse back-
ground compositions (e.g., buildings, clouds, or trees). Fur-
thermore, the dataset includes prominent UAV models —
specifically the DJI Inspire, DJI Phantom 4, DJI Marvic Air,

DIJI Marvic Pro, DJI Spark, and Parrot. Similar to the DUT
Anti-UAV dataset, the majority of drones in the Anti-UAV
dataset are positioned centrally within the image frames. A
comprehensive three-stage annotation process was used to
generate precise annotations. The dataset does not specify
a version explicitly dedicated to object detection.

B. Dataset Structure

The dataset is structured into two main folders: images
and labels. Each folders is further divided into training, test,

SynDroneVision
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Figure I. Folder configuration of the SynDroneVision dataset.



Table II. Parameter specifications for the Sun and Sky Actor to create environment-dependent illumination variations.

Environment Solar Time | Direct. Light Intensity Rayleigh Scattering (Channel Values)
(lux) Red Green Blue
from to min max min max min max min max
University Site 6.00 | 21.00 1 126 0.014 | 0.708 | 0.148 | 0.900 | 0.361 1
Venetian City [10] 9.40 | 17.00 15 0.100 | 0.565 | 0.199 | 0.739 | 0.410 | 0.990
Farming Grounds [8] 7.24 | 14.25 5 13 0.119 | 0.599 | 0.188 | 0.836 | 0.361 1
Modular Cityscape [20] | 6.87 | 17.30 15 70 0.125 | 0.686 | 0.225 | 0.687 | 0.719 1

and validation sets. Within these subdivisions, there are dis-
tinct folders for each image sequence, along with a subset
of randomly blurred images (denoted by the suffix *_B’).
Annotations in the labels folder are provided as text files
according to the YOLO standard format:

<object-class> <x> <y> <width> <height>.

Note that <x> and <y> correspond to the normalized coor-
dinates of the bounding box center. The normalization ex-
tends to both the bounding box coordinates and dimensions.
Figure I shows SynDroneVision’s structural organization.

C. Further Details on SynDroneVision
C.1. Environments

The creation of SynDroneVision, as outlined in Section
3.1 (main paper), involved the application of diverse vir-
tual environments. The majority of these environments are
publicly available (some free of charge and some requir-
ing payment). The only exception is the University Site
environment, which was specifically designed to replicate
a real-world scenario. Table III provides a comprehensive
overview of the environments and their respective charac-
teristics. Figure II illustrates camera perspectives and light-
ing configurations determined for each environment.

C.2. Illumination Parameters

To enhance the range of illumination within the Syn-
DroneVision dataset, we primarily modified the settings
of the Sun and Sky Actor [12] and the Post Process Vol-
ume [ 1], essential tools within the Unreal Engine [13].

Sun and Sky Actor. For the Sun and Sky Actor, the fol-
lowing parameters were systematically modified:

* Solar Time — The solar time parameter of the Sun and
Sky Actor controls the position of the sun with respect
to a pre-defined geographical location, simulating the
natural progression of time during the day. Adjust-
ing the solar time changes the sun’s position relative to
the horizon, creating different lighting conditions and
shadows.

* Directional Light Intensity — The intensity parame-
ter of the Directional Light Actor controls the bright-
ness of the light. Adjusting this parameter alters the
overall illumination and shadow strength in the scene.
Higher values increase brightness, while lower values
decrease it.

* Rayleigh Scattering — The Rayleigh scattering parame-
ter in Unreal’s Sky Atmosphere contains both an RGB
value and a scale. While the RGB value specifies the
color tint of the scattering effect, the scale controls the
overall intensity. This affects the sky’s color and ap-
pearance, simulating natural atmospheric phenomena
such as blue skies during the day and red hues at sun-
rise or sunset.

Table II summarizes the (environment-dependent) parame-
ter value ranges employed in generating SynDroneVision.

Post Process Volume. To create variations in the scene’s
color grading, we refined the following color temperature-
related parameters within the Post Process Volume:

o Temperature Type — The Temperature Type parameter
specifies the method for adjusting the color tempera-
ture of a scene. Available options are White Balance
(default) and Color Temperature. White Balance lever-
ages the Temp value to calibrate the virtual camera,
maintaining accurate white tones. Color Temperature
utilizes the Temp value to directly adjust the scene’s
overall color hue. Both methods were employed in the
generation process of SynDroneVision.

e Temp — The Temp parameter regulates the white bal-
ance relative to the scene’s light temperature. While
higher values introduce a warm (yellow) coloration,
lower values generate a cool (blue) tint. Matching tem-
perature values ensure a neutral white light.

e Tint — The Tint parameter refines the white balance tint
of a scene, correcting color imbalances to attain a more
natural color representation across different light tem-
peratures.

The parameter value ranges are detailed in Table I'V.



Table III. Overview of environments used for synthetic data generation. The symbols v (applies) and X (does not apply) indicate an
environment’s public availability (2nd column from the left) and mandatory cost (3rd column from the left).

Environment

Publ. Avail.

Chargeable

Description

University Site

A custom-designed environment replicating a German university
campus situated within a wooded landscape. This urban setting
features mid-rise building structures and a moderate vegetation
density. Figure II: images 1-6 (rows 1-3).

Venetian City [10]

A commercially available environment offering a realistic rep-
resentation of Venice. The included demo map showcases
Mediterranean-style buildings, autumnal trees, canals, stone
bridges, and additional exterior elements such as benches and
street lamps. Figure II: images 1-6 (rows 4-5).

Farming Grounds [8]

A small agricultural environment featuring grain fields, fruit-
bearing trees, and a variety of vegetable plants. In addition, the
scene includes a small greenhouse, multiple raised garden beds,
fencing, and other typical agricultural elements such as wooden
barrels and crates. Figure II: images 1-6 (row 6).

Rural Australia [14]

A publicly accessible environment capturing the expansive fields
and open spaces characteristic of the Australian countryside. It
includes detailed representations of natural elements, such as
rivers, creeks, and rock formations, as well as native vegetation
(e.g., shrubs and grasses) and local fauna (e.g., different bird
species in flight). Figure II: images 1-6 (row 7).

City Park [23]

An urban park environment characterized by a rich diversity of
lush vegetation, including trees, shrubs, flowers, and grass. The
park features winding pathways and serene water features such
as ponds and fountains. In addition to a few small buildings,
the environment includes playgrounds, picnic areas, and sports
grounds, as well as urban furniture such as benches, lampposts,
and trash cans. Figure II: images 1-5 (row 8).

Factory Grounds [22]

An open-access environment showcasing a factory site. It ex-
hibits various aspects of industrial architecture, including struc-
tures such as warehouses, production facilities, assembly lines,
and storage installations, along with an extensive network of
pipes, ducts, and other infrastructure. The environment also fea-
tures a variety of machinery and equipment commonly found in
factories or industrial settings. Figure II: image 6 (row 8), im-
ages 1-6 (row 9).

Urban Downtown [

]

A freely accessible environment featuring a Midwestern outdoor
mall. Thus, the buildings are predominantly commercial, includ-
ing shops, cafes, and restaurants. The urban design incorporates
outdoor seating areas, green spaces, and playgrounds, set against
a backdrop of mountains. The represented vegetation comprises
flowers, small shrubs, and trees, evoking a summer-like setting.
Figure II: images 1-6 (row 10), images 1-4 (row 11).

Modular Cityscape [

]

An urban scene characterized predominantly by buildings (both
commercial and residential) with diverse architectural styles.
The environment integrates urban infrastructure, including
streets and sidewalks, and is equipped with urban furniture such
as benches, bus stops, streetlights, and trash receptacles. Fig-
ure II: images 5-6 (row 11), images 1-6 (last row)
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Figure II. Customized camera perspectives and lighting configurations tailored to each environment. The camera fields of view (FOVs)
correspond to the following environments (arranged from left to right, top to bottom): University Site (rows 1-3), Venetian City (rows 4-5),
Farming Grounds (row 6), Rural Australia (row 7), City Park (images 1-5, row 8), Factory Grounds (image 6, row 8; images 1-6, row 9),
Urban Downtown (images 1-6, row 10; images 1-4, row 11), and Modular Cityscape (images 5-6, row 11; images 1-6, last row).



Table IV. Post Process Volume settings.

Environment Temp Tint
min max min max
University Site 4,400 | 12,000 0 0.30

Venetian City [10] 3,840 | 15,000 0 0.25
Farming Grounds [§] 4,588 | 4,588 0.05 | 0.05
Modular Cityscape [20] | 4,770 | 9,500 | -0.02 | 0.03

Table V. Technical configuration details for Unreal projects.

Global Illumination

Dynamic Global Illumination Methods \ Lumen
Reflection

Reflection Method Lumen
Reflection Capture Resolution 128
Reduce Lightmap Mixing on Smooth %
Surfaces

Support Global Clip Plane for Planar Re- J*
flections

Lumen

Use Hardware Ray Tracing v
Ray Lighting Mode Surface Cache

Software Ray Tracing Mode Detail Tracing

Hardware Ray Tracing

Support Hardware Ray Tracing v
Path Tracing v
Software Ray Tracing

Generate Mesh Distance Fields v
Distance Field Voxel Density 0.2

* not enabled for University Site

Rendering Settings. The rendering settings of an Un-
real project have a profound impact on both visual qual-
ity and system performance. In the generation process
of SynDroneVision, we employed the rendering configura-
tions specified in Table V for the majority of environments.
Exceptions include the environments Factory Grounds [22
and City Park [23], which retained the default settings.

C.3. Object Area Ratio and Object Aspect Ratio

Supplementing the characteristics presented in Section
3.5 (main paper), Figure III illustrates the distributions of
object area (top) and object aspect ratios (bottom) for drones
in the SynDroneVision dataset. Across all dataset partitions
— training, validation, and test — the distribution of object
area ratios exhibit a pronounced rightward skew. A compa-
rable trend is observed in the distribution of aspect ratios.
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Figure III. Object area and object aspect ratio distribution in the
SynDroneVision dataset across training, validation, and test splits.
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Figure IV. YOLOv9e detections on the DUT Anti-UAV test
set [27] (1st column), the UAV-Eagle dataset [3] (2nd column), and
the Drone Dataset by [2] (last column) demonstrating improved
bounding box precision for models trained on both SynDroneVi-
sion and DUT Anti-UAV data (last row). Predictions (red dashed
line) are marked alongside ground truth (solid blue line).

D. Analysis Details
D.1. Detection Examples

Figure IV presents selected examples from the DUT
Anti-UAV [27], the UAV-Eagle [3], and the Drone Dataset
by [2], along with their corresponding detection outcomes
obtained using YOLOv9e. The effectiveness of the detec-
tion results is compared across all three training strategies,



Figure V. Small cut-outs of selected samples from the DUT Anti-UAV test set that failed to be detected by YOLOV9e, irrespective of the
employed training data. Ground truth bounding boxes are marked in blue.

Table VI. Performance of YOLOv8m, YOLOvS8I, and YOLOv9c on the UAV-Eagle dataset [3] and the Drone Dataset by [2] (out-of-
distribution data) across different training data configurations. The SynDroneVision dataset is abbreviated as SDV.

Evaluation Data YOLO Training Data mAP 1 FNR | | FDR |
SDV (Ours) | DUT Anti-UAV | @0.25 @0.5 @0.5-0.95
(synthetic) (real)
v - 0.944 0.771 0.293 0.201 0.169
v8m - v 0.935 0.823 0.302 0.199 | 0.063
v v 0.961 0.849 0.350 0.136 | 0.089
N v - 0.951 0.786 0.304 0.217 | 0.125
}i’;‘)"Eagle ] v8l - v 0920 0.725 0217 | 0.180 | 0.224
v v 0.979 0.869 0.368 0.126 | 0.074
v - 0.926 0.770 0.289 0.216 | 0.163
vOc - v 0.922 0.799 0.275 0.219 | 0.077
v v 0.975 0.859 0.353 0.141 | 0.092
v - 0.758 0.527 0.188 0.310 | 0.138
v8m - v 0.801 0.560 0.208 0.278 | 0.113
v v 0.824 0.613 0.232 0.196 | 0.114
Drone Dataset by [?] v - 0.768 0.515 0.193 0.389 | 0.076
(coal) val - v 0.800 0.552 0.199 0.263 | 0.227
v v 0.799  0.603 0.227 0.216 | 0.116
v - 0.737 0.530 0.199 0.401 0.073
vOc - v 0.806 0.556 0.206 0.292 | 0.134
v v 0.825 0.606 0.224 0.198 | 0.126

i.e., YOLOV9e trained (i) exclusively on SynDroneVision
(first row), (ii) solely on DUT Anti-UAV (second row), and
(iii) on a combination of both datasets (last row). The figure
illustrates the superior bounding box localization achieved
by the strategic combination of both datasets during train-
ing, supporting the significant performance enhancements
in mAP values discussed in Section 4.2 (main paper). Con-
versely, Figure V displays selected examples from DUT
Anti-UAV where YOLOv9e fails to detect existing drones,
irrespective of the training data. Detection failures are most
commonly observed in scenarios where the drone’s visibil-
ity is significantly compromised, e.g., due to camouflage
effects [18] (see Figure V, second image from the left) or
occlusions (see Figure V, third image from the left).

D.2. Performance on Out-of-Distribution Data

Section 4.2 (main paper) highlights that the perfor-
mance and robustness enhancements achieved with Syn-
DroneVision on out-of-distribution data are not limited to
YOLOV9e, but extend to other YOLO variants as well.
Evaluating YOLOv8m, YOLOVS8I, and YOLOvV9c on the
UAV-Eagle dataset also demonstrates that training exclu-
sively with either SynDroneVision or DUT Anti-UAV
yields comparably strong results across all performance in-
dicators (see Table VI). In some cases, models trained solely
on SynDroneVision perform even better than those trained
on real-world data, particularly in terms of mAP values at
an IoU threshold of 0.25. In analogy to YOLOV9e, the best
performance is achieved when combining both datasets dur-



Table VII. Performance of YOLOv8m, YOLOVS], YOLOv9c, and YOLO9¢ on the SynDroneVision test set across different training data

configurations. The SynDroneVision dataset is abbreviated as SDV.

YOLO Training Data Evaluation on SynDroneVision
SDV (Ours) | DUT Anti-UAV mAP 1 FNR | | FDR |
(synthetic) (real) @025 @05 @0.5-0.95
v8m v - 0.995 0.995 0.944 0.013 0
v v 0.995 0.995 0.942 0.014 0
Vsl v - 0.995 0.995 0.955 0.014 | 0.001
v v 0.995 0.995 0.956 0.013 0
Voc v - 0.995 0.995 0.952 0.014 | 0.001
v v 0.995 0.995 0.954 0.014 0
Ve v - 0.995 0.995 0.967 0.014 | 0.001
v v 0.995 0.995 0.967 0.014 0

ing training. Here, YOLOVS8I exhibits the most significant
improvement over exclusive real-world data training, fea-
turing a 14.4 percentage point increase in mAP at an IoU
threshold of 0.5 and a 10.51 percentage point improvement
across a range of IoU thresholds from 0.5 to 0.95 (cf. Ta-
ble VI). Furthermore, integrating synthetic and real-world
data effectively lowers the FNR, whereas variations in the
FDR remain inconsistent.

For the Drone Dataset by [2], models trained exclusively
on SynDroneVision exhibit slightly lower mAP values com-
pared to those trained solely on DUT Anti-UAV. Neverthe-
less, the integration of both datasets yields overall perfor-
mance enhancements, as detailed in Table VI. The only ex-
ception seems to be YOLOVS8I, where the mAP value at an
IoU threshold of 0.25 is marginally higher for the model
trained exclusively on DUT Anti-UAV. However, the dis-
crepancy is negligible, with a difference of only 0.001.

D.3. Performance on SynDroneVision

To provide a comprehensive understanding of model
performance, we also incorporate the SynDroneVision test
set into our evaluation. Specifically, we focus on models
trained either exclusively on SynDroneVision or on a com-
bination of SynDroneVision and DUT Anti-UAV. Table VII
highlights the consistently high performance of the models
across all performance indicators.
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