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This material includes technical specifics like hyperparameter settings, data processing procedures, and training configu-
rations. The goal is to give the audience a comprehensive understanding of the self-supervised training process used in our
pipeline. Additionally, we present supplementary experimental results that complement and reinforce the arguments made in
the main paper.

Implementation Details. All the experiments were performed on a machine with 8 NVidia A10G GPU cards with 24GB
memory each, using PyTorch. For ΦBKB design choice we employ variations of the ViT [3] backbone (ViT-Small, ViT-Base,
ViT-Large, ViT-Large with Registers, ViT-Huge) initialised with weights pre-trained via the DINOv2 [7], DINO-REG [2]
or MAWS [8] frameworks. ΦCROSS is a multi-head cross attention block followed by 2 (up-sample and down-sample) linear
projections with GELU activations applied in between. The ΦCROSS layers are randomly initialised. We train for 800 epochs on
ABO and 8000 epochs on iNaturalist dataset. We use a significantly larger number of epochs on iNaturalist due to the complex
nature and fine-grained structure of the dataset. We train using the AdamW optimiser [6] and various batch sizes distributed
over 8 GPUs which are conditioned by the size of the backbone (20 when using the ViT-Small backbone or 3 for ViT-Huge).
We found the training to be highly sensitive in regard to the teacher momentum and learning rate combinations. The values
of teacher momentum and learning rate for jobs using ViT-Base or larger are validated to 0.9996 and 5e − 6, respectively.
For ViT-Small we set the teacher momentum to 0.996. The rest of the hyper-parameters follow the configurations described
in [1, 7]. A warm-up scheduler is applied to the teacher temperature for 30 epochs from 0.04 to 0.07, and to the the learning
rate for 10 epochs. The later follows a cosine decay down to 1e− 8. During training we use image sets with fixed length of
4 elements. Every epoch, we randomly sample 4 different images for each object, thus the ordering is irrelevant.

As an overall rule, we used the same model configuration for both evaluation setups (single-image versus MILE). Each
backbone maintains a consisent input patch size, matching the pre-trained model configuration. Specifically, DINOv2-Small,
DINOv2-Base, DINOv2-Large, DINO-Registers-Large, MAWS-Base and MAWS-Large all utilize a patch size of 14, while
MAWS-Huge employs a patch size of 16.

We generate 2 global and 8 local crops for each image. The global crops are generated such that each crop covers an
image ratio between 0.45 and 1.0. For the local crops, the image ratio is between 0.05 and 0.45. Additionally, we follow the
data augmentation pipeline described in BYOL [4]. For the larger model variants such as ViT-Large and ViT-Huge we utilise
the LORA [5] adapter. This is plugged over the visual encoding backbone targeting the key, query and value modules from
the backbone with the matrix rank validated to the value of 48. This adds a double benefit to our learning procedure, as it
enables robust usage of GPU resources, while considerably speeding up the training procedure.

To gain better insight into the mechanics of this training process, we performed a t-SNE analysis [9] on the embeddings
retrieved at different epochs during training. These results are illustrated in Figure 2. The embeddings are from the MILE
with MAWS-ViT-L model, taken at epochs 0, 500, and 1, 000. We selected 200 random classes from the Aves category of the
iNaturalist dataset, due to its high intra-class diversity. We then generated random combinations of image sets for each of the
selected classes. In the t-SNE plots, we color-coded 20 random classes and gray-plotted the rest. Initially, the embeddings
are uniformly dispersed across the latent space. However, as the training loss stabilizes, the embeddings begin to group
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Figure 1. t-SNE visualization of single-image vs. multi-image embeddings computed from image sets of length 8 with MAWS ViT-L
backbone on the iNaturalist macro-categories. Notice the clear class separability and implicit clustering achieved by our method. On
the other hand, for the single-view, there are multiple collisions between the elements of similar classes.

Figure 2. Evolution of the multi-image latent embedding during the SSL training for iNaturalist with t-SNE. We select random
embeddings from 200 random Aves classes and color plotted a subset of 20. At epoch 0, the embeddings are randomly dispersed throughout
the latent space. As the training converges the randomness is progressively replaced by implicit grouping centered around each class of
interest (effect gradually highlighted by the coloured plots from epoch 500 and 1000).

into clusters associated with the classes of interest. This demonstrates the model’s ability to learn meaningful class-specific
representations through the self-supervised training process.

Additional Visual Results and Failure Cases. Additional visual results with the PCA color coded implicit region corre-
spondence retrieved via the encoding backbone ΦBKB are illustrated in Figure 3. Context-conditioned class-agnostic object
segmentations are present in Figure 5 highlighting the implicit capability of our approach to better infer the contour of the
common object based on the previously seen image context. Failure cases usually happen when the image information does
not contain clear evidence towards a single object, or the surrounding background guide the focus towards other elements.
Such examples are shown in Figure 6.

Furthermore, in Figure 7 we illustrate the incremental impact of the latent state over the conditional class-agnostic object
segmentation. We select different multi-image samples from iNaturalist and consider one of the images as a reference image
(i.e. marked with a green rectangle) which is positioned at the end of the input sequence. Next, we progressively increase the



ABO iNaturalist

Figure 3. Color coded region correspondence emphasised via PCA. Notice the robustness of the encoding extraction backbone to the
class variety, single versus multi object presence within individual images, occlusion with different background elements, partial versus
full views of the objects or the high visual complexity of the portrayed scenes.



Figure 4. SSL training logs from iNaturalist. From left to right we illustrate: the evolution during training epochs for loss LMI, gating
function 1−σ and the AR@10 performance for different ΦBKB initialisations. An important factor in model performance (for both DINOv2
and MAWS variants) is dictated by the backbone size. Furthermore, notice the inverse correlation effect between loss and performance
even though the learning and evaluation tasks are not directly linked. The 1 − σ plot shows how the pondering weight of the incremental
states of L changes as training progresses. If initially the impact is dominated by the backbone encoding of I0, as the training progresses
it learns to better assimilate the previously seen visual information. Even though the ΦBKB configurations differs considerably, the ΦCROSS

manifests consistent behaviour by converging after similar number of epochs, thus proving the versatility of our approach.

image support for the latent state from a single image to four images. Noticeably, as more images depicting the category of
interest are added, the attention is better focused towards the common depicted object across the multi-image input.

Computational Complexity. Another important observation regards the computational complexity of the comparing meth-
ods. For both MILE and all the single-image baselines, the computational complexity of building the embedding(s) of an
object with |I| images is linear with |I| (e.g. O(|I|×E), where O(E) represents the cost of running ΦBKB on a single image).
However, for retrieving an object from a gallery with N indexed objects, similarly with |I| images each, the computational
complexity of the single-image baseline is quadratic w. |I| (e.g. O(|I|2×N×S) where O(S) represents the cost of compar-
ing two latent embeddings), while for MILE, the complexity is independent of |I| (i.e. O(N × S)). The resulting speed-up
factor |I|2 is more impactful as the number of elements within the multi-image set increases.

Permutation invariant architecture design choice. We did not take into account a permutation invariant architecture for
two reasons: (1) Complexity vs. performance trade-off. All reported metrics are averaged across all permutations of the
input sequences, with average standard deviations of 0.23 and 0.27 on ABO and iNaturalist, respectively. Additionally, the
studies shown in Figure 5 of the main paper indicate that the incremental embedding construction is robust to noise, with
MILE scoring minimal performance drops when up to 50% of the input samples are replaced with random ones (as opposed
to the single-image evaluation setup). Therefore, we did not identify a strong rationale for employing a different architecture
beyond the lightweight cross-attention mechanism. (2) Building an incremental embedding acts as a filtering bottleneck,
making MILE robust to noise and also producing useful byproducts, such as the discriminative elements of the common
object.

Motivation behind multi-image object search design choice. The rationale behind the multi-image setup is to leverage
the complementary visual attributes of the object, which are challenging to encapsulate through a single-image representation.
This is applicable to gallery image data setup. Note that many major online retailers (e.g. eBay, Alibaba, Amazon, Target)
utilize a multi-image setup for the product galleries on their platforms. In these cases, each item in the product catalog is
typically represented by a collection of multiple images, rather than a single image. This allows users or buyers to search for
a specific product by providing their own random photos of the item, leveraging the full visual information available for each
product in the catalog, not just a single image. A similar scenario exists for biologists and naturalists who aim to identify
specific animal or plant species. In these cases, each animal or plant species is often depicted through multiple photographic
representations, enabling better visual matching and identification within the gallery.



Figure 5. Visualisations of latent cross-attentions on iNaturalist. Different variants of attention maps are illustrated for the image
marked with a green rectangle. The attention map to the left originates from the backbone encoder ΦBKB. The middle and the right attention
maps are the results of the cross-attention between the in-place [CLS] token and the latent associated with the images within the blue
rectangle. Notice the improvement brought by the conditioning based on the prior imaging information (i.e. blue rectangle) shifting the
attention towards the common-object of interest.



Figure 6. PCA visualisations for failure cases. Usually, our approach fails when the object of interest is either out of focus in the main
scene, there are multiple dominant objects or the surrounding background is too complex, thus causing a high visual ambiguity degree.

Figure 7. Progressive improvement of conditional segmentation. For different multi-image samples grouped in two columns, we
illustrate the conditional segmentation for the last image (i.e. green rectangle) by progressively increasing the image support (i.e. blue
rectangle) for the latent variable from 1 to 4 images. This procedure emphasizes from a visual perspective the incremental capability of L
to assimilate discriminative elements of the object or category of interest with each processing step.

Robustness to noise. Another relevant study is shown in Figure 1. We sampled random image sets from the most represen-
tative sub-class (in terms of image samples) for each of the 13 categories from the iNaturalist dataset. We then computed the
associated single-image and multi-image embeddings using MAWS ViT-Large backbones. Next, we created 2D t-SNE [9]
projections of these embeddings. This analysis demonstrates the enhanced class separability achieved by our approach. An-
other key observation is that semantically similar classes, such as Amphibia and Reptilia, are positioned adjacent to each
other in the projection.

Impact of SSL. The SSL paradigm played a key-role in the development of our framework, as it unlocked the immediate
extension to large scale data corpuses. A detailed view of the SSL training loss and its impact on the recall metrics is



illustrated in Figure 4. MILE performance scales up based on the ΦBKB model size, while σ and ΦCROSS bring consistent gains,
despite their light weight size.
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