
A. OVERVIEW

In this appendix, we include more techniques, evaluation details, limitations and future work discussion. For better visualization,
we encourage readers to watch the video results in the supplementary material folder.

B. TECHNIQUE DETAILS

Framework General Settings: Identical to the baseline ARF [5], in ARF-Plus, we configure the stylization optimization to
run for 10 epochs, with a learning rate that exponentially decreases from 1e-1 to 1e-2. The scalar weight of style loss is set as
α = 1, and the weight of total variation loss is set as γ = 1. Unless stated otherwise, we assign a scalar weight of 0.001 to the
content loss for forward-facing scenes and 0.005 for 360-degree scenes, which aligns with the baseline ARF.
Color Preservation Control Settings: In our color preservation control, the style loss is calculated based only on the luminance
channel. Due to the presence of only a single luminance channel for computing style loss, the value of style loss becomes
diminished. However, for content loss, the calculation is still performed using all three RGB channels. As a result, to achieve
balance, the content loss weight, denoted as β in Eq. 1, should be decreased accordingly. Specifically, we set β = 0.0001 for
forward-facing scenes and β = 0.0005 for 360-degree scenes.
Scale Control Settings: All parameters for the scale control remain consistent with the baseline ARF.
Spatial Control Settings: We utilize a pre-trained fully-convolutional network model with a ResNet-101 backbone [27] to
obtain the semantic segmentation spatial mask. All other settings remain consistent with the baseline ARF.
Depth Enhancement Control Settings: The pre-trained MiDaS network [23] is used as depth estimation network ϕ1. In
ARF-Plus, We set the depth weight δ = 0.003 (in Eq. 10). All other settings remain consistent with the baseline ARF.
Sensitiveness & Comparisons & Validation & Control issue w.r.t. hyperparams: As mentioned above, hyperparams α, β,
and γ align with those of the baseline ARF. Compared to ARF, our color preservation and spatial control have not introduced
any additional hyperparams. Regarding depth control, a single hyperparameter δ is introduced to control depth perception loss
weight. The magnitude of its value depends on how realistic the user wants the scene to appear in perceptive depth, as shown in
Fig. 9. For scale control, the adjustment and sensitiveness of scale hyperparams wl and T l

S depends on the differences (e.g. in
size) between the depicted content in the style image and the 3D scene, as well as people’s aesthetic preferences. In Appendix
C.3, Fig. 11, Fig. 12, and Fig. 13 present comparisons.
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Fig. 9: δ positively affects the perceived visual depth in stylized scenes, but excessive values can imbalance total loss in Eq. 10,
resulting in less aesthetically pleasing results.

C. EVALUATION

In Section C.1, we detail the evaluation methods used in the main paper (Section 4) and the supplementary parts (Section C.2
- C.5). In Section C.2, additional experimental outcomes with color control are encompassed, including both qualitative and
quantitative analyses. In Section C.3, we showcase influential factor studies concerning the receptive field and style image
size. Additionally, we demonstrate further research on combining receptive field weights and utilizing various style image
sizes. In Section C.4, we present additional quantitative experimental outcomes and intermediate training results. Additionally,
we elucidate the procedure for computing ArtFid within the specified regions. In Section C.5, supplementary qualitative and
quantitative results of depth enhancement control are provided.



C.1. Evaluation Methods

We assess our approach’s effectiveness by conducting quantitative and qualitative comparisons with the baseline method ARF.
We prioritize qualitative evaluation as the primary method in our study, while quantitative evaluation serves as a supplementary
measure. This decision is motivated by two main factors. Firstly, both our baseline and most style transfer approaches primarily
emphasize qualitative comparisons rather than quantitative metrics. Secondly, existing quantitative metrics have limitations in
accurately capturing human visual perception.

C.1.1. Qualitative Evaluation Method:

It is worth mentioning that there is always no single correct output in the field of neural style transfer. Currently, the most
popular approach for evaluating neural style transfer models is a qualitative comparison of style and content views. To assess
the qualitative performance, we present visual comparisons between ARF and our ARF-Plus (with different perceptual controls)
for both forward-facing and 360-degree scenes. Because the results of our perceptual controls have a clear visual impact on the
outputs and do not involve subjective aesthetic judgments, we do not conduct a user study to further evaluate the method.

C.1.2. Quantitative Evaluation Method:

As for quantitative evaluation, some works [28, 29] employ classical perceptual metrics such as PSNR or SSIM [30], however,
these metrics are generally not consistent with human perception [31]. Recently, Wright et al. [26] proposes a quantitative
metric by combining two factors: 1. ContentDist: content preservation between generated images Xg and content images Xc,
and 2. StyleFID: style feature distributions difference between generated images Xg and style images Xs. We utilize this metric
for quantitative evaluation.

ArtF id(Xg, Xc, Xs) = (1 + ContentDist) · (1 + StyleFID)

ContentDist = 1
N

∑N
i=1 d(X

(i)
c , X

(i)
g )

StyleFID = FID(Xs, Xg)

(11)

We adopt this measurement metric from the 2D images domain and apply it to our research. To mitigate the impact of photo-
realistic radiance fields reconstruction performance, we utilize generated photo-realistic views as Xc instead of using training
photos. We choose a number of N viewpoints, render the photo-realistic radiance field, and generate multiple photo-realistic
scene views Xreal before stylization, obtaining Xc = {X(1)

real,X
(2)
real, ...,X

(N)
real}. After stylization, for each stylized radiance

field, we render a series of images from the same viewpoints, which produces Xg = {X̂(1), X̂(2), ..., X̂(N)}. In order to
generate Xs, we replicate the provided style image Xstyle with N times, which gives us Xs = {Xstyle,Xstyle, ...,Xstyle}.
For each forward-facing scene, we set the number of rendered novel views N to 120. For 360-degree scenes, where there are
more angles to consider, N is increased to 200. The chosen novel view angles and the method employed for generating novel
views remain consistent with the baseline ARF.

C.2. Color Preservation Control

In order to enhance the substantiation of the essentiality and efficacy of our color preservation technique (employing a
luminance-only approach), an additional preprocessing technique, namely color histogram matching, has been incorporated for
comparative analysis. In the preprocessing color histogram matching step, the colors of the style image Xstyle are adjusted
to match the colors of the photo-realistic content view Xcontent through an image to image color histogram matching. This
creates a new style image X ′

style which is then used as a new style input, replacing the original Xstyle. We utilize the linear
method that Gatys et al. [9] used, which has been proven to produce effective outcomes in transferring image color. Unlike 2D
image style transfer with just one content image, we have photos from various viewpoints as training data. When computing
the style loss Lstyle for each viewpoint, a new style image X′

style is generated corresponding to the current training photo
Xcontent.

C.2.1. Qualitative Evaluation Results

Fig. 10 demonstrates visual comparisons between methods applied to real-world forward-facing scenes - Leaves, Flower,
Trex, and Horns. Fig. 10 (a) demonstrates the rendered views from photo-realistic fields. In the context of color preservation



control, our goal is to ensure that the colors of the stylized scene remain consistent with those of the photo-realistic radiance
fields. As depicted in Fig. 10 (b)-(c), our proposed color control method, effectively preserves the original scene’s color while
successfully learning the desired style. In terms of details, our color preservation algorithm produces superior results compared
to the preprocessing color histogram matching approach. For the scene Flower, red color leakage occurs on color histogram
matching, resulting in the appearance of red dots on some of the leaves. Our color preservation method does not exhibit
obvious color leakage. Moreover, the colors and brightness of the stylized outputs achieved through our proposed method
closely resemble those of the photo-realistic view.

C.2.2. Quantitative Evaluation Results

Table 2 displays the quantitative results on forward-facing data. Our color control methods have lower ContentDist scores than
the baseline ARF, suggesting that the stylized scenes more closely resemble the photo-realistic scenes due to color preservation.
Our color preservation method demonstrates superior performance on Style-019. However, for Style-007, the difference in
effectiveness between our method and the preprocessing color histogram matching method is not significant. An intriguing
observation is that when utilizing Style-007, the ContentDist values for color histogram matching on Leaves and Trex are
smaller compared to the values obtained from our color preservation method. This may be attributed to the fact that color linear
matching tends to yield satisfactory results when both the content and style images have relatively simple color compositions
and distributions. The Leaves is mainly composed of green, while the Trex are primarily composed of dark brown. Similarly,
the style image Style-007 has a relatively simple color composition with brown being the dominant color. As a result, the new
style image generated by color histogram matching effectively integrates the colors of the scene. Another interesting finding
is that our color preservation methods result in better StyleFID scores on Style-019, which means the transferred style is more
similar to the given style image. We do not have a very confident explanation for this. One possible explanation is that the
inconsistency between human judgements and machine evaluation metrics is inevitable. The StyleFID [26] can only roughly
judge the style similarity, but its algorithm cannot accurately simulate the human brain’s understanding of style and content.

Table 2: Quantitative results of color preservation control: style transfer on forward-facing scenes. Results superior to the
baseline ARF are highlighted in bold. The best results are in bold, and the second best results are in blue.

ArtFID ↓ ContentDist ↓ StyleFID ↓

Style Scene ARF Preprocess ARF-Plus w/ ARF Preprocess ARF-Plus w/ ARF Preprocess ARF-Plus w/
Hist.match Color Control Hist.match Color Control Hist.match Color Control

Style-019 Leaves 49.6562 47.6273 38.0664 0.5424 0.4416 0.3817 31.1951 32.0386 26.5494
Flowers 49.8151 43.9636 39.0186 0.5893 0.5393 0.3766 30.3443 27.5606 27.3451
Trex 47.4958 48.0271 42.4836 0.5644 0.5509 0.4562 29.3610 29.9681 28.1745
Horns 45.5077 44.1148 41.3908 0.4889 0.4865 0.4256 29.5641 28.6767 28.0330

Style-007 Leaves 43.6201 51.6565 41.7606 0.4978 0.4000 0.4034 28.1233 35.8971 28.7565
Flowers 40.2618 52.6178 46.8613 0.5552 0.4758 0.3963 24.8884 34.6547 32.5600
Trex 36.2511 38.4576 46.2475 0.5386 0.5053 0.5212 22.5606 24.5483 29.4028
Horns 38.3892 57.3361 51.5242 0.5088 0.5067 0.5033 24.4442 37.0529 33.2752
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(b) Novel views rendered from artistic radiance fields in style-019

(c) Novel views rendered from artistic radiance fields in style-007

(a) Novel views rendered from the reconstructed photo-realistic radiance fields

Fig. 10: Qualitative results of color preservation control: style transfer on forward-facing scenes Leaves, Flower, Trex and
Horns. Our ARF-Plus with color preservation control successfully preserves the original colors while effectively transferring
the style patterns. Compared to the preprocessing color histogram matching method which generates a new style image, our
color preservation method yields better results.



C.3. Scale Control

For scale control, we only apply qualitative evaluation. This is because ArtFID and its two components ContentDist and
StyleFID, are unable to accurately measure the scaling of style patterns [26]. The scaling of style patterns can lead to variations
in both the 3D scene’s style patterns and content appearance. As a result, both ContentDist and StyleFID, which are quantitative
numerical metrics, undergo changes. However, these value changes are not directly proportional to the degree of style pattern
size magnification or reduction. In other words, ArtFID cannot indicate whether the style pattern is being scaled down or scaled
up.

C.3.1. Receptive Field and Style Image Size:

As our method involves the consideration of both the receptive field (selected convolution layers) and style image size, we add
additional influential factor studies experiments to assess the impact of each factor on the style scaling independently. Fig.
11 shows the rendered views derived from 10 stylized (artistic) radiance fields generated with a variety of settings, including
changes to the receptive field and alterations to the size of the style image. Each stylized (artistic) radiance fields corresponds
to a stylized 3D scene.
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Novel views with amplified details rendered from corresponding artistic radiance fields

Fig. 11: The impact of receptive field and style image size on style scaling. (a) Selecting different Conv layer blocks with the
fixed style image size 1x. (b) Resizing style image with the fixed Conv layer block. Settings that are identical to the baseline
ARF are marked with the asterisk (*).



In Fig. 11 (a), we modify the receptive field by selecting different convolution layer blocks while keeping the original style
image size. As we delve deeper into the VGG network, the receptive field undergoes a rapid expansion. In the ultimate layer,
it encompasses a substantial portion of the input image. This phenomenon has implications for the stylized radiance fields, as
it leads to an overall reduction in style pattern scale and incorporation of a greater amount of coarse styles. For instance, when
choosing the Conv4 block, the stylized output exhibits an increased presence of circular petal-like forms, which are similar
to the yellow moon style in Style-014. Conversely, with the Conv2 block, the emphasis in the output is more on fine details,
reminiscent of brush strokes in Style-014. Moreover, the result of the Conv2 block presents a larger scale in terms of the style
pattern. In Fig. 11 (b), we keep a fixed receptive field (similar to the one selected in the baseline, which is conv3) while altering
the size of the style image. The results reveal that changes in the style image size also impact the resulting style pattern scale.
When the style image is resized to 0.25x, the small circular spots on the leaves in the stylized radiance fields correspond to the
moon pattern from Style-014. However, when the style image is resized to 0.5x, the circular spots on the leaves also increase
in size accordingly. Based on the results shown in Fig. 11, both the receptive field and style image size have an impact on the
pattern scale in the stylized 3D scenes. The receptive field serves as a control mechanism for learning fine or coarse patterns
from the style image and also influences the size of the patterns. On the other hand, the style image size assists in adjusting the
overall scale of the style.

Conv2: 0.9 + Conv3: 0.1 Conv2: 0.5 + Conv3: 0.5 Conv2: 0.1 + Conv3: 0.9

Conv3: 0.9 + Conv4: 0.1 Conv3: 0.5 + Conv4: 0.5 Conv3: 0.1 + Conv4: 0.9

(a)

(b)

Novel views (amplified in details) rendered from corresponding artistic radiance fields

Fig. 12: Weighting across different receptive fields (convolution layers) achieves continuous and diversified scale control. The
adjustment of weights can result in a continuous scaling of the style patterns on the petals.

C.3.2. Combination of Receptive Field Weights:

We proceed to demonstrate the role of weight combinations for different receptive fields (Eq. 2). This enables the achievement
of continuous style scaling control. Fig. 12 depicts the rendered novel views corresponding to six artistic (stylized) radiance
fields, generated using combinations of receptive fields with varying weights. Each artistic radiance fields portrays a stylized
3D scene. In Fig. 12 (a), as the weights of Conv3 gradually increase from 0.1 to 0.9, while the weights of Conv2 decrease
from 0.9 to 0.1, the style texture on the petals becomes progressively finer, scaling down. Similar observations can be made
for the results in 12 (b). Increasing the weights of Conv4, which has a broader receptive field, also leads to style scaling down.
Furthermore, it enhances the representation of coarse style patterns (circular shapes) present in the style image. In conclusion,
the weight combinations for different receptive fields in our method are important, as they offer the advantages of flexible and
continuous control over the style pattern scale.

C.3.3. Combination of Style Image Sizes:

As shown in Fig. 11, when using the same receptive field for different style image sizes, distinct scale effects emerge. It is easy
to infer that varying combinations of receptive fields with different style image sizes will offer increased flexibility. Fig. 13
provides further illustrations.
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Fig. 13: Assigning selected receptive fields (conv3 and conv4) with different T l
S can increase flexibility. The coarse pattern

(moon-like circular shape) is shrunk while the width of stroke lines is scaled up.

C.4. Spatial Control

C.4.1. Qualitative Evaluation Results

Fig. 14 showcases additional rendered novel views of the scene Room under the spatial control via semantic segmentation
masks. More experiment results of the scene Horse on various styles are shown in Fig. 15, which demonstrate that our spatial
control approach exhibits remarkable performance across diverse styles. This is evident in the stylization of semantic objects
within novel views rendered from various perspectives.

As the source of our spatial control masks can be derived from various segmentation methods, we observed that, for forward-
facing scenes, employing binary segmented depth maps is also effective in identifying significant object regions. This is
based on the assumption that, within the user’s field of view, the main objects that grab their interest typically have less depth
than the surroundings. Since the reconstructed photo-realistic radiance fields (used as the stylization input) contains depth
information for each view, the depth map can be directly generated. Depth spatial masks are generated by applying Otsu’s
binary segmentation to select the optimal threshold. Fig. 16 presents the outcomes of spatial control using depth segmentation
masks. The results further underscore the efficacy of our spatial control approach, as evidenced by the proficient stylization
of selected regions, irrespective of whether employing segmentation masks or their inverted counterparts. In both scenarios,
effective stylization can be applied to either the chosen background regions or the object (foreground) regions.
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Fig. 14: Qualitative results of spatial control with semantic segmentation masks: style transfer on the forward-facing scene -
Room. Our ARF-Plus with spatial control effectively stylizes specific semantic objects - chair, table, and TV - within the scene.
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Fig. 15: Qualitative results of spatial control with semantic segmentation masks: style transfer on the 360-degree scene - Horse.
Our ARF-Plus with spatial control exhibits superior performance in stylizing the designated semantic object - horse - within
the scene.
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Fig. 16: Qualitative results of spatial control with depth segmentation spatial masks: style transfer on forward-facing scenes -
Leaves and orchids. Our ARF-Plus with spatial control effectively stylizes certain spatial areas according to spatial masks.



C.4.2. Intermediate Training Results

In Fig. 17 and Fig. 18, the intermediate results of multiple-style spatial control are demonstrated. The training epoch number
of this method is identical to the baseline ARF. It shows that our multiple styles spatial control method - Combined Cached-
gradients Map - simultaneously optimizes and updates gradients in different regions, regardless of whether the spatial mask
originates from semantic segmentation or depth map segmentation. The style of each selected region changes at every epoch.
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Fig. 17: Multiple styles spatial control (semantic segmentation mask) with Combined Cached-gradients Map: intermediate
validation results rendered from fixed viewpoints during the training process.

C.4.3. ArtFID Mask-In Evaluation

Regarding quantitative assessment, we provide a more detailed explanation of ArtFID’s usage within specific regions as follows.
The situation with spatial control is rather unique, as only certain regions within each rendered image are stylized. Directly
applying ArtFID to the entire image would fail to capture the stylized details within a specific region. As illustrated in Fig.
19, we propose the Mask-In evaluation method, which is specifically designed to accommodate spatial control. It is important
to note that the spatial mask used during training (to specify the selected area for stylization) cannot be utilized in evaluation.
The generated views in the evaluation phase have novel perspectives, which are different from training viewpoints. The spatial
masks for evaluation are generated from selected novel views rendered from photo-realistic radiance fields (photo-realistic-RF).
Then spatial masks are then applied to the views of the photo-realistic radiance fields and the stylized radiance field (with the
same selected viewpoints). The processed results are used as inputs Xc and Xg for ArtFID (Eq. 11). The ARF results within
the mask provide specific indicators for the designated regions.
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Fig. 18: Multiple styles spatial control (depth segmentation mask) with Combined Cached-gradients Map: intermediate valida-
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Fig. 19: Our proposed Mask-In evaluation method for ARF-Plus spatial control.



C.5. Depth Enhancement Control

C.5.1. Qualitative Evaluation Results

Fig. 20 provides visual contrasts between our depth enhancement control method and the baseline ARF. Qualitative findings
substantiate our approach’s successful retention of perceptual depth across diverse viewpoints. The flower’s petals in the Flower
scene generated by our depth control method better retain the depth of the scenes. The petals of the entire flower contain more
perceptive depth. After applying our depth enhancement control method, the skeleton outline of the trex in Trex is more
prominent, and the depth details of the head are also more pronounced.
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Fig. 20: Qualitative results of depth enhancement control: style transfer on the forward-facing scenes - Flower and Trex. Our
method, ARF-Plus with depth enhancement control, demonstrates superior performance in preserving perceptive depth across
varying views - the petals in Flower, and the head and skeleton in Trex.

C.5.2. Quantitative Evaluation Results

Table 3 displays the quantitative results on the forward-facing scenes. Due to the preservation of perceptual depth, the stylized
scenes appear to be more similar to the original photo-realistic views than the baseline, as seen by our depth enhancement
control method’s lower ContentDist scores. One interesting finding is that our depth-aware control method always generates
better StyleFID and ArtFid scores on Style-017 and Style-022. This suggests that the depth control result in a smaller distance
between feature distributions on the style image and the stylized scene views. We note this issue as future work and hope to
find an answer through collaborative research with peers in the field.



Table 3: Quantitative results of depth enhancement control: style transfer on the forward-facing scenes. ContentDist ↓ measures
content preservation. StyleFID ↓ measures style matching. ArtFID ↓ [26] combines the metrics ContentDist and StyleFID to
evaluate the overall visual effect of style transfer. The best results are in bold.

ArtFID ↓ ContentDist ↓ StyleFID ↓
Style Scene ARF ARF-Plus w/ ARF ARF-Plus w/ ARF ARF-Plus w/

Depth Control Depth Control Depth Control

Style-001
Leaves 40.7593 46.1252 0.5609 0.5557 25.1122 28.6497
Flower 46.1371 46.8988 0.5695 0.5534 28.3964 29.1908
Trex 46.7243 52.0687 0.6465 0.6114 27.3781 31.3131
Horns 46.8514 48.5809 0.6169 0.5631 27.9754 30.0794

Style-017
Leaves 32.8128 31.4048 0.6294 0.6044 19.1385 18.5738
Flowers 35.0658 31.2184 0.6166 0.5892 20.6908 18.6444
Trex 31.0811 27.8044 0.6817 0.6506 17.4823 15.8447
Horns 31.6769 29.0361 0.5938 0.5678 18.8755 17.5198

Style-022
Leaves 36.6079 32.7389 0.6208 0.5699 21.5859 19.8536
Flower 46.7435 41.1923 0.6853 0.6473 26.7367 24.0061
Trex 39.9837 38.3577 0.7348 1.5834 22.0485 21.7852
Horns 35.4226 34.5354 0.6606 0.6154 20.3306 20.3795

Style-041
Leaves 48.4786 48.2329 0.6318 0.6045 28.7086 29.0618
Flowers 59.2806 60.9881 0.6908 0.6706 34.0610 35.5072
Trex 51.5526 49.8702 0.6425 0.6299 30.3871 29.5977
Horns 46.7634 49.9683 0.5992 0.5918 28.2413 30.3908

D. LIMITATIONS AND FUTURE WORK

D.1. Limitations

The limitations of our work include: 1) Due to limited time and computational resources, we primarily conducted experiments
on Plenoxels [32], which is known for its faster optimization (e.g., training the same 3D scene where Plenoxel takes only 11
minutes while NeRF [6] requires 1 day). 2) We did not explore other semantic segmentation or depth prediction models to
potentially improve the performance of spatial control and depth-aware control. The reason is that our primary focus lies in
validating the fundamental principles underlying our control methods. 3) We did not extensively experiment or conduct in-depth
analysis on the combination of multiple controls and the use of multiple styles. This is because of our desire to prioritize the
analysis of each method’s effectiveness. Conducting experiments specifically on a single style allows for a better understanding
of the strengths and limitations of each control method.

D.2. Future Work

A direct direction to explore is scaling control when dealing with multiple blended styles. Since different styles have varying
strengths and characteristics, it would be more convenient and practical to have an algorithm that can automatically compute
suitable parameters for different coarse or fine pattern scaling. Moreover, it is worth trying to build an interactive panel that can
dynamically display a preview of the scaling effects on a 3D scene.

Another promising direction to explore is the integration of the-state-of-art techniques for scene understanding with our
perceptual control methods. Currently, our ARF-Plus framework utilizes depth information and the positional information of
semantic objects in the scene, but it does not take into account additional types of information such as scene composition, cate-
gories, and other aspects. By incorporating a more comprehensive range of scene information, we can enhance the perceptual
control capabilities of our technology and further improve the quality of stylization.
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