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Figure 1. Visualization of a point cloud from the MMCBE
(left) and wheat (right) datasets. This figure comes from [4].

1. Implementation

In our NeFF, the SDF network Eg is modeled by an MLP
built by 8 hidden layers, and Relu with Softplus is used as
the activation function for all hidden layers. A skip con-
nection is used to connect the input and the fourth layer.
The feature filed Ef consists of an MLP with two hidden
layers, while the color filed Ec has four hidden layers. All
hidden layers have the same hidden size of 256. Positional
encoding is applied to spatial locations with 6 frequencies
and viewing directions with 4 frequencies. We use 4 sparse
3D CNN blocks, as shown in Fig. 2, to compress the 3D
features map into a 2D one, and the 3 Transformer encoders
have the same defaulting as the original paper [6]. The final
prediction MLP includes two hidden layers with 512 and
256 hidden sizes. We use an ADAM optimizer [3] to opti-
mize both networks on a Navida A5500 GPU. The F and
H functions are trained separately. It takes 10 hours to opti-
mize NeFF for 200K iterations, and around 8 hours to train
BioNet for 100K iterations with 4 batch sizes.

2. Difference in two datasets

When comparing our method with baselines in Section
5.2, we find that the MARE suggests that the same approach
achieves superior results on the wheat dataset [5] compared
to MMCBE [4]. To delve deeper into these differences, we
visualized the point clouds from both datasets, as shown
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Figure 2. Architecture of the sparse 3D CNN backbone. The
input is the voxelized 3D features generated from NeFF. SS-
CNN stands for submanifold sparse 3D CNN [1], while SCNN
stands for sparse 3D CNN. Each pyramidal level consists of
two ResNet blocks [2].

in Figure 1. Significant occlusion issues exist in MMCBE,
where LiDAR data is often scanned from the side, con-
trasting with the top-down collection approach in the wheat
dataset. This difference can lead to a higher quality of point
cloud data for the wheat dataset, thereby enhancing the ac-
curacy of biomass prediction.

3. 3D backbone network architecture
We are using the 3D backbone network to further extract

3D features from the point cloud or distilled feature maps,
and the 3D backbone network mainly consists of sparse 3D
CNN layers due to their advantages in efficient computation
and local geometrical feature extraction. The details of 3D
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Figure 3. The visualization of 3D features generated by NeFF module. For each fused image, the stitched RGB image is on the
leftmost, a 3D reconstruction is in the middle, and the rightmost image shows cropped 3D features (used by the BioNet module for
biomass prediction.)

backbone network are shown in Fig. 2. For the MMCBE
dataset, we first voxelized the inputs (i.e. point cloud or 3D
feature maps) to obtain its voxel representation. The size of
the 3D inputs is 16 meters in length, 4 meters in width, and
1.5 meters in height, with a voxelization resolution of 0.08
meters in length, 0.05 meters in width, and 0.075 meters in
height, respectively. For the wheat dataset, the size of the
3D input is 1 m3, the voxelization resolution is 0.008 meters
in width and length, and 0.025 meters in height. The value
of each voxel is obtained by averaging all points inside a
given voxel. The computational operations mainly include
regular 3×3×3 convolutional kernel, submanifold CNN [1]
and max pooling.

4. Evaluation metrics

Metrics used in the paper are namely mean absolute er-
ror (MAE), mean absolute relative error (MARE), and root
mean square error (RMSE), as shown in equation 1 2 3.
MARE offers the advantage of being more robust against
the range of ground truth values observed across our 9 time-

points.
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Where N is the total point cloud data points with i ∈
{1, . . . , N} as the index, m̂i is the predicted and mi the
ground-truth biomass value. The lower these errors, the
better the prediction accuracy. We used RI to indicate the
relative improvement when comparing two different meth-
ods. The accuracy of two methods are p1 and p2, (say p1 is
better than p2), the R1 of p1 against p2 is as follows:

RI =
|p1− p2|

p2
(4)



5. NeFF
To visualize the results from the NeFF, we sample 3D

features at a resolution of 10243 from the neural feature
field (the feature sampling resolution used for BioNet mod-
ule in 20483) in MMCBE dataset. We then employ princi-
pal component analysis to compress the high-dimensional
features into three channels. These three channels are sub-
sequently normalized to the range [0, 1] and displayed as
the RGB color of reconstructed points, as shown in Fig. 3.
From this visualization, it is evident that the distilled 3D
features can effectively distinguish between the foreground
(plants) and background (soil). Furthermore, different parts
of the plants can be separated as well. The NeFF generally
constructs 3D features for each plot, encompassing several
rows of cotton. However, our specific interest lies in the
two 13 m cotton rows, as we possess above-ground biomass
ground truth data only for every two rows of cotton. Con-
sequently, we must crop the 3D features of the two cotton
rows of interest from the entire set of constructed features.
These cropped 3D features serve as the input for the BioNet
module, which predicts the final biomass. The cropped 3D
features are depicted in each rightmost figure in Fig. 3.
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