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A. Supplementary Material
A.1. Data Preprocessing and Splitting

The data acquired from the ADNI dataset included all
subjects from ADNI 1, ADNI 2, ADNI 3, ADNI GO that
have paired MRI and FDG-PET. Data has been through
pre-processing steps as shown at the ADNI website for
FDG-PET' and for MRI’>. FDG-PET scans were addi-
tionally processed using SPM12* and CAT12*: first, the
origin of all images was set to the anterior commissure
region which is required for the normalization function in
SPM; secondly, the scans are normalized to the MNI space
using a 4-th degree B-spline interpolation; thirdly, the
normalized images were registered to the MNI152 template
with a voxel size of 1.5mm?3. In the end, all MRI scans
are registered to the corresponding PET scans. MRI scans
were additionally processed using the CAT12 toolbox with
the standard VBM pipeline, consisting the initial and the
refined voxel-based processing. The initial pipeline applies
a denoising filter, followed by internal resampling. The
data is then bias-corrected, affine-registered and lastly
followed by the standard SPM unified segmentation. In
the second stage, skull-stripping is performed and the
brain is parcellated before the final AMAP segmentation
step. Finally, the tissue segments are spatially normalized
to a common reference space using Geodesic Shooting.
Fig. A.1 concludes the whole data preprocessing procedure.

To evenly distribute age, gender, and diagnosis across
training, validation, and test data splits, we adapt the data
split method from ClinicaDL [42]. First, we assess the bal-
ance of each split by computing the propensity score, which
represents the probability of a sample being in the train-
ing set based on a logistic regression model that includes

Uhttps://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/
Zhttps://adni.loni.usc.edu/methods/mri-tool/mri-analysis/
3https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
“https://neuro-jena.github.io/cat12-help/

the known confounders [37,41]. We then compare the per-
centiles of the propensity score distribution across the train-
ing, validation, and test sets, using the maximum deviation
across all percentiles as a measure of imbalance [39]. This
process is repeated for 1000 randomly selected partitions
and the partition with the minimum imbalance is finally se-
lected.

A.2. Model Parameters

Tab. A.1 presents detailed information on the parame-
ters used in our model and training procedure. We use
the AdamW optimizer with a learning rate of 5 x 1074, a
weight decay of 1 x 10~?, a dropout rate of 0.0, a batch size
of 16, and cosine annealing as the learning rate scheduler.
The models are trained on one NVIDIA A100 GPU with
40 GByte memory for 3,800 iterations, with early-stop to
prevent overfitting. The ViT-based backbone of DiaMond
adopts a patch size of 8, a model depth of 4, a feature em-
bedding dimension of 512, 8 attention heads, 7 of 0.01. In
total, the model includes 30 parameters.

A.3. Training Strategies

We conducted an additional ablation study on different
training strategies for DiaMond. DiaMond’s three inde-
pendent branches allow us to initialize individual modality-
specific branches with pretrained weights, potentially lever-
aging prior knowledge. During the training process, we
explore two distinct strategies: (1) keeping the pretrained
branches static (frozen) to preserve the learned representa-
tions, and (2) allowing the branches to continue learning
and adapt further (continual learning). We compare these
approaches to training the model entirely from scratch using
5-fold cross-validation on the ADNI dataset, specifically fo-
cusing on the classification task between CN and AD. The
results indicate that incorporating pretrained models pro-
vides no substantial advantage over training the model from
scratch. This suggests that the model is able to learn the
relevant representations adequately through training alone.
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Figure A.1. Dataset preprocessing of MRI and PET data.

Table A.1. Parameters for DiaMond.

Table A.3. Differential diagnosis between CN, AD, and FTD on
the in-house multi-dementia dataset.

CN vs. AD vs. FTD

Method

BACC F1-Score Precision Recall
MDNN [40]  71.41 +224 71994212 7324+1.77 73.50 +2.02
DiaMond 76.46 +3.33 7553 +4.38 76.76 - 4.88  75.39 £+ 3.23

Parameter Value
Patch size 8
Depth 4
Model Embedding dim. 512
Attention heads 8
Model size 30M
T 0.01
Batch size 16
Optimizer AdamW
Scheduler Cosine Annealing
Training Learning rate 1x1074
Weight Decay 1x107°
Dropout 0.0
Training Iterations 3.8K
Hardware one NVIDIA A100 GPU

Table A.2. Ablation on different training strategies.

Training strategy Frozen Continual Learning From Scratch
BACC (%) 91.62 +2.67 92.36 +2.41 92.42 +2.63
AUC (%) 96.50 + 1.73 97.17 £ 1.25 97.11 + 1.47

A4. Differential Diagnosis of Dementia with
FreeSurfer Features

Ma et al. [40] uses whole-brain cortical thickness and
volume features derived from FreeSurfer [38] in a multi-
scale deep neural network (MDNN) for the differential di-
agnosis of dementia. We further incorporate this method
as a benchmark for the differential diagnosis between CN,
AD, and FTD. This shape-based method achieves a bal-
anced accuracy of 71.41%, yet it remains lower than the
performance of DiaMond.
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