
Supplementary Material for OmniGS: Fast Radiance Field Reconstruction using
Omnidirectional Gaussian Splatting

Longwei Li1 Huajian Huang2 Sai-Kit Yeung2 Hui Cheng1

1Sun Yat-sen University 2 The Hong Kong University of Science and Technology
lilw23@mail2.sysu.edu.cn, hhuangbg@connect.ust.hk, saikit@ust.hk, chengh9@mail.sysu.edu.cn

A. Detailed Backward Gradient Derivation
A.1. Prerequisites

First, let us reconsider the α-blending model in 3D Gaus-
sian Splatting (3DGS) [6], which is used for rendering the
final color of each pixel on the output image:

C =

N∑
i=1

ciαi

i−1∏
j=1

(1− αj), (1)

where N is the number of 3D Gaussians near enough to
this pixel, i.e. the projected N Gaussian centers are within
a certain distance threshold from the center of this pixel.
For perspective cameras, these N Gaussians are sorted by
their tz (local depth), from nearest to farthest. But for om-
nidirectional cameras, they are sorted by tr (local distance
to the camera center), from nearest to farthest.

For the i-th 3D Gaussian, color ci is determined by the
relative position from the camera center to its Gaussian
mean m (world coordinate), and its Spherical Harmonics
coefficients. Neither of them is affected by the camera
model, so there is no need to change this part of the gra-
dient.

The sampled intensity αi is determined by opacity oi and
the sampled value on its 2D Gaussian distribution:

αi = oiGi(∆pi), (2)

where ∆pi = pi − ps is the difference vector between
projected Gaussian center pi and sampling pixel position
ps. The scope of oi stops here, so it is also not influenced by
the camera model, and we don’t need to change its gradient.

The sampling on the 2D Gaussian function Gi(·) is:

Gi(∆pi) = exp

(
−1

2
(∆pi)

TΣ̃−1
i (∆pi)

)
. (3)

where ps is a constant from the view of sampled Gaussians.
So it is clear that what we need to determine before sam-
pling each point is actually the 2D Gaussian center pi and
inverse covariance Σ̃−1

i . Without loss of generality, let us

consider a certain Gaussian and elide the subscript i. Until
now, we can derive the related gradient w.r.t. loss L as:

∂L
∂m

=
M∑
k=1

[
∂L
∂c

∂c

∂m
+

∂L
∂αk

∂αk

∂Gk

(
∂Gk

∂Σ̃−1

∂Σ̃−1

∂Σ̃

∂Σ̃

∂m

+
∂Gk

∂p

∂p

∂m

)]
, (4)

∂L
∂q

=

M∑
k=1

(
∂L
∂αk

∂αk

∂Gk

∂Gk

∂Σ̃−1

∂Σ̃−1

∂Σ̃

∂Σ̃

∂q

)
, (5)

∂L
∂S

=

M∑
k=1

(
∂L
∂αk

∂αk

∂Gk

∂Gk

∂Σ̃−1

∂Σ̃−1

∂Σ̃

∂Σ̃

∂S

)
, (6)

where m is the world-space Gaussian mean position, q is its
rotation quaternion, and M is the total number of instances
generated by this Gaussian in all rendering tiles. The Gaus-
sian covariance is determined by q and scale S.

As stated before, the color branch
∂L
∂c

∂c

∂m
does not

change with camera model. For the intensity branch,
∂L
∂αk

∂αk

∂Gk
,

∂Gk

∂Σ̃−1

∂Σ̃−1

∂Σ̃
and

∂Gk

∂p
are relations between

final image loss and the projected 2D Gaussians. They have
already been given by [6] (some manually derived, the oth-
ers given by PyTorch autograd). We keep them the same.

Let Σ denote the 3D Gaussian covariance in the world
coordinate system, R denote the Gaussian rotation matrix
converted from quaternion q. We have:

∂Σ̃

∂q
=
∂Σ̃

∂Σ

∂Σ

∂R

∂R

∂q
, (7)

∂Σ̃

∂S
=
∂Σ̃

∂Σ

∂Σ

∂S
, (8)

where
∂Σ

∂R

∂R

∂q
and

∂Σ

∂S
are completely in the 3D world

coordinate system so have nothing to do with the camera
model. They have also been implemented by [6].



Recall that we use the local affine approximation method
[10] to perform the projection:

Σ̃ ≈ JWΣWTJT, (9)

where W is the rotation part of the 4 × 4 transformation
matrix Tcw from the world coordinate system to the cam-
era space. This transformation (also known as the camera
pose) is calibrated by a sparse SfM algorithm (we use the
openMVG [8] implementation). It constructs a relationship
between the world position m = [mx,my,mz]

T and the lo-
cal position (camera coordinate system) t = [tx, ty, tz]

T of
the mean of a Gaussian:

t = Tcw ∗m = Wm+ tcw. (10)

where tcw is the translation part of camera pose. We denote:

W =

W00 W01 W02

W10 W11 W12

W20 W21 W22

 . (11)

J is the Jacobian of the camera projection:

J =

J00 J01 J02

J10 J11 J12

0 0 0

 =


∂px
∂tx

∂px
∂ty

∂px
∂tz

∂py
∂tx

∂py
∂ty

∂py
∂ty

0 0 0

 , (12)

Because 3D world-coordinate covariance Σ has nothing
to do with m, and the camera rotation matrix W is regarded
as a constant here, we can derive from Eq. (9) that:

∂Σ̃

∂m
=

∂Σ̃

∂J

∂J

∂t

∂t

∂m
(13)

To derive the items within J, recall the equirectangular cam-
era model we used to project the local t:[

lon
lat

]
=

[
arctan2(tx/tz)
arcsin(ty/tr)

]
, (14)

[
sx
sy

]
=

[
lon/π
2lat/π

]
, (15)

[
px
py

]
=

[
(sx + 1)W/2
(sy + 1)H/2

]
, (16)

[sx, sy]
T and [px, py]

T are the screen-space and image pixel
coordinates respectively, arctan2 is the 4-quadrant inverse

tangent. Here we derive the gradient of the camera model:

J00 =
∂px
∂tx

= +
W

2π
· tz
t2x + t2z

, (17)

J01 =
∂px
∂ty

= 0, (18)

J02 =
∂px
∂tz

= −W

2π
· tx
t2x + t2z

, (19)

J10 =
∂py
∂tx

= −H

π
· txty

t2r
√

t2x + t2z
, (20)

J11 =
∂py
∂ty

= +
H

π
·
√

t2x + t2z
t2r

, (21)

J12 =
∂py
∂tz

= −H

π
· tzty

t2r
√

t2x + t2z
, (22)

where tr =
√

t2x + t2y + t2z , W ,H are image width, height.
Till now, we have collected the prerequisites for deriva-

tion. What we need to do is propagating the gradient to
∂Σ̃

∂m

(for m, covariance branch),
∂p

∂m
(for m, mean branch) and

∂Σ̃

∂Σ
(for q and S).

A.2. Gradient w.r.t. m: Covariance Branch

Considering the symmetry of Eq. (9), we can define an
intermediate variable T = WTJT. Then we can denote:

Σ̃ = TTΣT =

 a b Skipped
b c Skipped

Skipped Skipped Skipped

 (23)

where the third row and column are skipped and

T =

T00 T01 T02

T10 T11 T12

T20 T21 T22

 ,Σ =

c0 c1 c2
c1 c3 c4
c2 c4 c5

 (24)

We can conclude from Appendix A.1 that
∂L
∂Σ̃

has been

given by [6], i.e.
∂L
∂a

,
∂L
∂b

,
∂L
∂c

are known. From Eqs. (23)
and (24) we can get:

a = (T00c0 +T10c1 +T20c2)T00

+ (T00c1 +T10c3 +T20c4)T10

+ (T00c2 +T10c4 +T20c5)T20 (25)
b = (T00c0 +T10c1 +T20c2)T01

+ (T00c1 +T10c3 +T20c4)T11

+ (T00c2 +T10c4 +T20c5)T21 (26)
c = (T01c0 +T11c1 +T21c2)T01

+ (T01c1 +T11c3 +T21c4)T11

+ (T01c2 +T11c4 +T21c5)T21 (27)

2



Then propagate to T:

∂L
∂T00

=
∂L
∂a

∂a

∂T00
+

∂L
∂b

∂b

∂T00
+

∂L
∂c

∂c

∂T00

= 2(T00c0 +T10c1 +T20c2)
∂L
∂a

+ (T01c0 +T11c1 +T21c2)
∂L
∂b

(28)

∂L
∂T10

= 2(T00c1 +T10c3 +T20c4)
∂L
∂a

+ (T01c1 +T11c3 +T21c4)
∂L
∂b

(29)

∂L
∂T20

= 2(T00c2 +T10c4 +T20c5)
∂L
∂a

+ (T01c2 +T11c4 +T21c5)
∂L
∂b

(30)

∂L
∂T01

= 2(T01c0 +T11c1 +T21c2)
∂L
∂c

+ (T00c0 +T10c1 +T20c2)
∂L
∂b

(31)

∂L
∂T11

= 2(T01c1 +T11c3 +T21c4)
∂L
∂c

+ (T00c1 +T10c3 +T20c4)
∂L
∂b

(32)

∂L
∂T21

= 2(T01c2 +T11c4 +T21c5)
∂L
∂c

+ (T00c2 +T10c4 +T20c5)
∂L
∂b

(33)

With the help of T, we can propagate the loss to our J:

∂L
∂J00

=
∂L
∂T00

∂T00

∂J00
+

∂L
∂T10

∂T10

∂J00
+

∂L
∂T20

∂T20

∂J00

= W00
∂L
∂T00

+W01
∂L
∂T10

+W02
∂L
∂T20

(34)

∂L
∂J01

= 0 (35)

∂L
∂J02

= W20
∂L
∂T00

+W21
∂L
∂T10

+W22
∂L
∂T20

(36)

∂L
∂J10

= W00
∂L
∂T01

+W01
∂L
∂T11

+W02
∂L
∂T21

(37)

∂L
∂J11

= W10
∂L
∂T01

+W11
∂L
∂T11

+W12
∂L
∂T21

(38)

∂L
∂J12

= W20
∂L
∂T01

+W21
∂L
∂T11

+W22
∂L
∂T21

(39)

According to Eq. (13), t is the next to be propagated:

∂L
∂tx

=
∂L
∂J00

∂J00

∂tx
+

∂L
∂J02

∂J02

∂tx
+

∂L
∂J10

∂J10

∂tx

+
∂L
∂J11

∂J11

∂tx
+

∂L
∂J12

∂J12

∂tx
(40)

∂L
∂tx

=
∂L
∂J10

∂J10

∂ty
+

∂L
∂J11

∂J11

∂ty
+

∂L
∂J12

∂J12

∂ty
(41)

∂L
∂tz

=
∂L
∂J00

∂J00

∂tz
+

∂L
∂J02

∂J02

∂tz
+

∂L
∂J10

∂J10

∂tz

+
∂L
∂J11

∂J11

∂tz
+

∂L
∂J12

∂J12

∂tz
(42)

From Eqs. (17) to (22), we can get the second derivative
of the equirectangular camera model:

∂J00

∂tx
= −W

2π

2txtz
(t2x + t2z)

2
(43)

∂J02

∂tx
= +

W

2π

t2x − t2z
(t2x + t2z)

2
(44)

∂J10

∂tx
= +

H

π

ty[2t
2
x(t

2
x + t2z)− t2zt

2
r]

t4r(t
2
x + t2z)

√
t2x + t2z

(45)

∂J11

∂tx
= +

H

π

tx[t
2
y − (t2x + t2z)]

t4r
√

t2x + t2z
(46)

∂J12

∂tx
= +

H

π

txtytz[t
2
r + 2(t2x + t2z)]

t4r(t
2
x + t2z)

√
t2x + t2z

(47)

∂J10

∂ty
= +

H

π

tx[t
2
y − (t2x + t2z)]

t4r
√

t2x + t2z
(48)

∂J11

∂ty
= −H

π

2ty
√
t2x + t2z
t4r

(49)

∂J12

∂ty
= +

H

π

tz[t
2
y − (t2x + t2z)]

t4r
√

t2x + t2z
(50)

∂J00

∂tz
= +

W

2π

t2x − t2z
(t2x + t2z)

2
(51)

∂J02

∂tz
= +

W

2π

2txtz
(t2x + t2z)

2
(52)

∂J10

∂tz
= +

H

π

txtytz[t
2
r + 2(t2x + t2z)]

t4r(t
2
x + t2z)

√
t2x + t2z

(53)

∂J11

∂tz
= +

H

π

tz[t
2
y − (t2x + t2z)]

t4r
√

t2x + t2z
(54)

∂J12

∂tz
= +

H

π

ty[2t
2
z(t

2
x + t2z)− t2xt

2
r]

t4r(t
2
x + t2z)

√
t2x + t2z

(55)

Note that there are several duplicated parts in the second
derivative, and we could precompute them to accelerate

3



the optimization. By substituting the above derivative into
Eqs. (40) to (42), we propagate the gradient to t.

Finally, propagate to m according to Eq. (10). Suppose
we have completed the color branch in Eq. (4) and got a
vector storing its gradients w.r.t. m. We could simply accu-
mulate the gradient from another branch:



∂L
∂mx

∂L
∂my

∂L
∂mz

+ = WT



∂L
∂tx
∂L
∂ty
∂L
∂tz

 (56)

A.3. Gradient w.r.t. m: Gaussian Mean Branch

From Appendix A.1, we know
∂L
∂p

=

[
∂L
∂px

,
∂L
∂py

]T

has

been given. We compute and record the results of Eqs. (17)
to (22), and further propagate the gradient to t (a new
branch of gradient w.r.t. t, different from Eqs. (40) to (42)):



∂L
∂tx
∂L
∂ty
∂L
∂tz

 (mean branch) =



∂L
∂px

∂px
∂tx

+
∂L
∂py

∂py
∂tx

∂L
∂px

∂px
∂ty

+
∂L
∂py

∂py
∂ty

∂L
∂px

∂px
∂tz

+
∂L
∂py

∂py
∂tz


(57)

Again, we accumulate this branch to the final
∂L
∂m

:



∂L
∂mx

∂L
∂my

∂L
∂mz

+ = WT



∂L
∂tx
∂L
∂ty
∂L
∂tz

 (mean branch) (58)

Parameter Value
Position l.r. (Initial) 0.00016
Position l.r. (Final) 0.0000016

Position l.r. delay multiplier 0.01
Position l.r. max. dumping steps 30000

Feature l.r. 0.0025
Opacity l.r. 0.05
Scaling l.r. 0.005
Rotation l.r. 0.001

Table 1. Setup of Learning Rates

A.4. Gradient w.r.t. q and S

Recall Eqs. (23) to (27). This time we fix T = WTJT in
order to propagate the gradient to Σ:

∂L
∂c0

=
∂L
∂a

∂a

∂c0
+

∂L
∂b

∂b

∂c0
+

∂L
∂c

∂c

∂c0

= T2
00

∂L
∂a

+T00T01
∂L
∂b

+T2
01

∂L
∂c

(59)

∂L
∂c3

= T2
10

∂L
∂a

+T10T11
∂L
∂b

+T2
11

∂L
∂c

(60)

∂L
∂c5

= T2
20

∂L
∂a

+T20T21
∂L
∂b

+T2
21

∂L
∂c

(61)

∂L
∂c1

= 2T00T10
∂L
∂a

+ 2T01T11
∂L
∂c

+ (T10T01 +T00T11)
∂L
∂b

(62)

∂L
∂c2

= 2T00T20
∂L
∂a

+ 2T01T21
∂L
∂c

+ (T20T01 +T00T21)
∂L
∂b

(63)

∂L
∂c4

= 2T10T20
∂L
∂a

+ 2T11T21
∂L
∂c

+ (T20T11 +T10T21)
∂L
∂b

(64)

The next steps, including
∂Σ

∂R

∂R

∂q
and

∂Σ

∂S
, are in the 3D

world coordinate system so not related to the camera model.
We could continue to use the derivation given by [6].

B. Hyperparameter Setup

B.1. Learning Rate

We keep all learning rates (l.r.) the same as the original
3DGS [6], including the continuous dumping process (de-
termined by the delay multiplier and maximum number of
dumping steps) of the position learning rate. Specific values
are shown in Tab. 1.

4



Parameter Value Explanation

λDSSIM 0.2
Weight of DSSIM part

in the photorealistic loss.
Densification

Interval 100
Densify the Gaussians
every certain iterations.

Opacity
Reset

Interval
3000

Reset all opacity
every certain iterations.

Densify
Minimum
Opacity

0.005
Prune Gaussians whose opacity

is less than the threshold
after each densification.

Densify
from

Iteration
500

Only densify
after a certain iteration.

Densify
until

Iteration
15000

Only densify and
reset opacity

before a certain iteration.
Densify
Gradient

Threshold
0.0002

Only densify Gaussians
whose 2D position gradient

is not less than the threshold.

Prune
by Extent

False
(EgoNeRF)

True
(Others)

If true, prune Gaussians
whose scale is too large

compared with the scene extent.

Percent
Dense 0.01

Deciding a threshold.
If a Gaussian is to be densified,

it is split if its scale is greater than
the threshold, otherwise cloned.

Table 2. Setup of Densification Hyperparameters

B.2. Densification

As shown in Tab. 2, we also keep all hyperparameters
related to densification the same with [6], except for prun-
ing by scene extent or not. We disable this feature only on
EgoNeRF dataset [3], because it applies an egocentric cam-
era motion pattern and the magnitude of motion between
frames is too small (only a few centimeters) compared to
the actual scene extent (a few meters or even larger). Scale
of Gaussians easily exceeds the threshold estimated from
camera poses. They are pruned very soon after beginning
and leave a completely empty scene behind. We observe
no extra floaters or blurs after disabling it on the EgoNeRF
dataset, so we apply this setup.

C. Performance Compared with Concurrent
3DGS-Based Work

OP43DGS [5] is a work concurrent with OmniGS. It
leverages function optimization theory to analyze the func-
tion’s minima, providing an optimal projection strategy for
3DGS, which can accommodate a variety of camera mod-
els, and thus supports training from omnidirectional inputs.

We ran OP43DGS on both the 360Roam [4] and
EgoNeRF [3] dataset with the same RTX 3090 GPU. We
used exactly the same inputs as we used for our method.

The overall results are reported in Tab. 3, indicating that
while we achieved similar reconstruction quality in most

Dataset Method OP43DGS [5] Ours

360Roam

PSNR↑ 25.441 25.464
SSIM↑ 0.810 0.806
LPIPS↓ 0.159 0.141
FPS↑ 14 121

OmniBlender-Indoor

PSNR↑ 34.718 35.330
SSIM↑ 0.923 0.917
LPIPS↓ 0.075 0.072
FPS↑ 9 115

OmniBlender-Outdoor

PSNR↑ 32.319 32.670
SSIM↑ 0.928 0.919
LPIPS↓ 0.049 0.044
FPS↑ 2 116

Ricoh360

PSNR↑ 24.135 26.032
SSIM↑ 0.766 0.825
LPIPS↓ 0.234 0.128
FPS↑ <1 91

Table 3. Overall quantitative evaluation results compared to
OP43DGS. FPS means the novel-view rendering FPS after train-
ing. We mark the best results with first .

scenes (PSNR+0.023, SSIM−0.004, LPIPS−0.018 on
360Roam, PSNR+0.612, SSIM−0.006, LPIPS−0.003
on EgoNeRF-OmniBlender-Indoor, PSNR+0.351,
SSIM−0.009, LPIPS−0.005 on EgoNeRF-OmniBlender-
Outdoor, PSNR+1.897, SSIM+0.059, LPIPS−0.106
on EgoNeRF-Ricoh360), our method rendered new
views much faster than OP43DGS (FPS+107 on 360Roam,
FPS+106 on EgoNeRF-OmniBlender-Indoor, FPS+114 on
EgoNeRF-OmniBlender-Outdoor, FPS+90 on EgoNeRF-
Ricoh360), indicating that the algorithm proposed by us
had less computational complexity than OP43DGS.

Training time and per-scene results are reported in the
tables of Appendix E. Note that in some real-world outdoor
Ricoh360 scenes, OP43DGS threw CUDA out of memory
errors at the early stage of optimization, so we report the
results evaluated just a few earlier than the errors occurred
in Tab. 9. This also caused its performance degradation. An
example of this phenomenon is shown in Supple. Fig. 1.

D. Runtime Performance

The runtime peak allocated GPU memory and the recon-
structed model file size are reported in Tab. 5 (EgoNeRF
dataset [3] OmniBlender scenes), Tab. 6 (EgoNeRF dataset
Ricoh360 scenes) and Tab. 7 (360Roam dataset [4]).

We also conducted an experiment on performance w.r.t.
hyperparameter densify gradient threshold which controlled
the level of densification. Results are reported in Tab. 4. All
experiments were run to 32k iterations. When we suppress
densification by increasing the threshold, the system con-
sumed less GPU memory and storage, reaching faster train-
ing (saving about 10 minutes per scene, compared with the
main paper experiments) and higher novel-view rendering
FPS, at the cost of quality loss.

5



E. Per-Scene Results
We additionally list the per-scene evaluation results in

Tab. 8 (EgoNeRF dataset [3] OmniBlender scenes), Tab. 9
(EgoNeRF dataset Ricoh360 scenes) and Tab. 10 (360Roam
dataset [4]),. We gather the reported results for baselines in
the way stated in the body of our paper. For OP43DGS [5],
we ran the experiments on our RTX 3090 machine as stated
in Appendix C, since their paper did not provide data on
360Roam or EgoNeRF dataset.

References
[1] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.

Srinivasan, and Peter Hedman. Mip-NeRF 360: Unbounded
anti-aliased neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5470–5479, 2022. 9, 10, 11

[2] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. TensoRF: Tensorial radiance fields. In European
Conference on Computer Vision (ECCV), pages 333–350,
2022. 9, 10, 11

[3] Changwoon Choi, Sang Min Kim, and Young Min Kim. Bal-
anced spherical grid for egocentric view synthesis. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 16590–16599, 2023.
5, 6, 9, 10

[4] Huang Huajian, Chen Yingshu, Zhang Tianjia, and Ye-
ung Sai-Kit. 360Roam: Real-time indoor roaming us-
ing geometry-aware 360◦ radiance fields. arXiv preprint,
arXiv:2208.02705, 2022. 5, 6, 11

[5] Letian Huang, Jiayang Bai, Jie Guo, Yuanqi Li, and Yan-
wen Guo. On the error analysis of 3d gaussian splatting and
an optimal projection strategy. In European Conference on
Computer Vision (ECCV), 2024. 5, 6, 7, 8, 9, 10, 11

[6] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler,
and George Drettakis. 3D gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics,
42(4), 2023. 1, 2, 4, 5, 8

[7] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view
synthesis. In European Conference on Computer Vision
(ECCV), 2020. 9, 10, 11

[8] Pierre Moulon, Pascal Monasse, Romuald Perrot, and Re-
naud Marlet. OpenMVG: Open multiple view geometry. In
Reproducible Research in Pattern Recognition, pages 60–74,
2017. 2

[9] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics,
41(4), 2022. 11

[10] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. EWA
splatting. IEEE Transactions on Visualization and Computer
Graphics, 8(3):223–238, 2002. 2

6



OmniGS (Ours) Ground TruthOP43DGS

E
g

o
N

eR
F

-B
ri

ck
s

Figure 1. An example of OP43DGS [5] underfitting degradation caused by CUDA out of memory on EgoNeRF-Ricoh360 dataset.

Scene Densify Gradient Threshold 0.0002 (Main Paper) 0.001 0.002

360Roam-bar

PSNR↑ 22.471 22.300 22.285
FPS↑ 69 196 219

GPU Mem. (MB) 4093.77 3004.83 3000.83
Model Size (MB) 252.44 62.41 55.17

OmniBlender-Indoor-barbershop

PSNR↑ 36.847 34.050 33.014
FPS↑ 114 195 208

GPU Mem. (MB) 1941.37 1436.10 1407.39
Model Size (MB) 92.31 14.43 10.11

OmniBlender-Outdoor-bistro bike

PSNR↑ 37.915 33.136 30.993
FPS↑ 117 170 197

GPU Mem. (MB) 2006.38 1529.46 1468.28
Model Size (MB) 91.37 23.00 18.37

Ricoh360-bricks

PSNR↑ 24.664 23.187 22.214
FPS↑ 72 212 310

GPU Mem. (MB) 3251.13 1934.14 1835.28
Model Size (MB) 222.18 13.48 4.37

Table 4. Performance w.r.t. gradient threshold of densification in representative scenes. Larger threshold leads to less densification. GPU
Mem. means peak allocated GPU memory. Model is the output *.ply file. Note that we use 1MB = 1024KB = 1048576Bytes.

Scene (Indoor) archiviz-flat barbershop classroom restroom
GPU Mem. (MB) 2036.20 1941.37 1993.29 2090.24
Model Size (MB) 104.75 92.31 98.85 103.16

Scene (Outdoor) bistro bike bistro square fisher-hut lone monk LOU pavilion midday chair pavilion midday pond
GPU Mem. (MB) 2006.38 2191.48 1929.33 2038.89 1733.18 1879.11 2350.89
Model Size (MB) 91.37 123.26 65.83 100.39 46.37 70.87 121.28

Table 5. Per-scene GPU memory and storage usage results on EgoNeRF-OmniBlender dataset. GPU Mem. means peak allocated GPU
memory. Model is the output *.ply file. Note that we use 1MB = 1024KB = 1048576Bytes.

Scene bricks bridge bridge under cat tower center farm
GPU Mem. (MB) 3251.13 3072.84 3404.03 2716.56 2562.45 3319.10
Model Size (MB) 222.18 178.90 199.44 129.40 82.06 227.30

Scene flower gallery chair gallery pillar garden poster
GPU Mem. (MB) 2941.10 2533.39 2481.25 2667.72 3599.49
Model Size (MB) 157.52 76.79 85.55 118.96 140.65

Table 6. Per-scene GPU memory and storage usage results on EgoNeRF-Ricoh360 dataset. GPU Mem. means peak allocated GPU
memory. Model is the output *.ply file. Note that we use 1MB = 1024KB = 1048576Bytes.

7



Scene Usage 3DGS [6] OP43DGS [5] Ours

Bar GPU Mem. (MB) 15073.06 4931.10 4093.77
Model Size (MB) 381.88 217.07 252.44

Base GPU Mem. (MB) 15005.90 5035.24 4204.85
Model Size (MB) 399.02 257.82 278.87

Cafe GPU Mem. (MB) 8834.68 4120.48 2796.73
Model Size (MB) 361.73 209.94 220.08

Canteen GPU Mem. (MB) 6889.46 2604.35 2245.97
Model Size (MB) 208.74 140.69 154.60

Center GPU Mem. (MB) 12168.91 3999.04 3366.32
Model Size (MB) 140.79 143.10 177.16

Corridor GPU Mem. (MB) 5505.35 2108.64 1805.57
Model Size (MB) 133.39 88.59 95.37

Innovation GPU Mem. (MB) 15670.58 5427.03 4573.49
Model Size (MB) 323.34 246.66 301.42

Lab GPU Mem. (MB) 8956.87 3750.96 2575.33
Model Size (MB) 267.08 130.42 153.75

Library GPU Mem. (MB) 7184.92 2831.33 2202.61
Model Size (MB) 215.66 116.89 131.17

Office GPU Mem. (MB) 9748.92 3407.26 2563.91
Model Size (MB) 146.47 106.09 113.45

Table 7. Per-scene GPU memory and storage usage results (32k iterations, around 25 minutes) on the 360Roam dataset. GPU Mem. means
peak allocated GPU memory. Model is the output *.ply file. Note that we use 1MB = 1024KB = 1048576Bytes. We additionally report
the results of 3DGS [6] (perspective 1024 × 1024 inputs, 28k iterations, around 25 minutes) and OP43DGS [5] (panoramic 712 × 1520
inputs, the same as ours, but run for 12k iterations, around 40 minutes) for comparison.

8



Scene
Method NeRF [7] Mip-NeRF 360 [1] TensoRF [2] EgoNeRF [3] OP43DGS [5] Ours

Iterations 10k 10k 100k 10k 10k 32k
Training Time > 5 hours > 2 hours ≈ 40 min ≈ 30 min > 30 min1 ≈ 25 min

archiviz-flat
PSNR↑ 27.460 28.760 31.000 30.480 35.254 35.496
SSIM↑ 0.820 0.848 0.871 0.876 0.959 0.955
LPIPS↓ 0.333 0.275 0.209 0.189 0.031 0.026

barbershop
PSNR↑ 28.010 28.350 30.200 32.530 35.431 36.847
SSIM↑ 0.838 0.845 0.887 0.930 0.968 0.965
LPIPS↓ 0.324 0.346 0.237 0.128 0.029 0.025

classroom
PSNR↑ 26.750 24.500 28.910 27.470 32.773 32.942
SSIM↑ 0.732 0.724 0.782 0.794 0.870 0.862
LPIPS↓ 0.491 0.482 0.410 0.323 0.142 0.142

restroom
PSNR↑ 28.410 28.030 26.910 30.430 35.414 36.035
SSIM↑ 0.636 0.637 0.624 0.761 0.896 0.888
LPIPS↓ 0.551 0.544 0.647 0.350 0.098 0.096

bistro bike
PSNR↑ 21.500 25.270 23.550 31.290 36.775 37.915
SSIM↑ 0.594 0.764 0.668 0.930 0.975 0.971
LPIPS↓ 0.562 0.299 0.468 0.074 0.019 0.014

bistro square
PSNR↑ 18.640 21.820 20.500 24.520 28.437 28.904
SSIM↑ 0.532 0.723 0.608 0.862 0.949 0.948
LPIPS↓ 0.678 0.303 0.444 0.126 0.038 0.028

fisher-hut
PSNR↑ 27.900 29.020 29.590 30.010 32.828 31.949
SSIM↑ 0.747 0.768 0.770 0.788 0.875 0.855
LPIPS↓ 0.490 0.418 0.424 0.281 0.081 0.081

lone monk
PSNR↑ 23.900 25.180 24.640 29.280 34.224 34.960
SSIM↑ 0.714 0.777 0.735 0.901 0.964 0.963
LPIPS↓ 0.361 0.266 0.299 0.115 0.034 0.023

LOU
PSNR↑ 25.490 27.810 31.350 32.010 36.695 37.309
SSIM↑ 0.786 0.852 0.906 0.914 0.965 0.957
LPIPS↓ 0.345 0.257 0.155 0.095 0.031 0.025

pavilion midday chair
PSNR↑ 26.050 26.850 27.700 29.860 32.144 31.965
SSIM↑ 0.800 0.809 0.810 0.905 0.952 0.931
LPIPS↓ 0.302 0.297 0.269 0.099 0.035 0.038

pavilion midday pond
PSNR↑ 21.940 23.030 22.430 24.680 25.133 25.685
SSIM↑ 0.627 0.686 0.641 0.774 0.817 0.809
LPIPS↓ 0.468 0.301 0.347 0.164 0.102 0.101

Table 8. Per-scene quantitative evaluation results on EgoNeRF-OmniBlender dataset, min denotes minutes. The first 4 are indoor scenes,
the other 7 are outdoor scenes. 1The time OP43DGS took for 10k iterations varied from 30 min to more than 4 hours in different scenes.

9



Scene
Method NeRF [7] Mip-NeRF 360 [1] TensoRF [2] EgoNeRF [3] OP43DGS [5] Ours

Iterations 10k 10k 100k 10k 6k1 32k
Training Time > 5 hours > 2 hours ≈ 40 min ≈ 30 min > 30 min ≈ 25 min

bricks
PSNR↑ 20.640 22.080 23.080 22.680 21.112 24.664
SSIM↑ 0.594 0.676 0.701 0.720 0.713 0.836
LPIPS↓ 0.547 0.371 0.342 0.292 0.277 0.120

bridge
PSNR↑ 21.480 22.730 23.270 22.980 23.297 23.676
SSIM↑ 0.634 0.695 0.695 0.713 0.781 0.790
LPIPS↓ 0.505 0.363 0.360 0.312 0.150 0.136

bridge under
PSNR↑ 22.430 23.370 24.560 24.250 23.678 26.601
SSIM↑ 0.650 0.723 0.736 0.763 0.779 0.873
LPIPS↓ 0.499 0.390 0.332 0.282 0.231 0.089

cat tower
PSNR↑ 22.180 23.380 23.840 23.690 22.930 24.756
SSIM↑ 0.615 0.668 0.665 0.681 0.695 0.773
LPIPS↓ 0.610 0.460 0.487 0.380 0.311 0.159

center
PSNR↑ 25.810 27.730 29.250 28.070 28.501 29.165
SSIM↑ 0.783 0.838 0.849 0.850 0.885 0.887
LPIPS↓ 0.484 0.293 0.279 0.236 0.111 0.100

farm
PSNR↑ 20.290 21.660 22.020 21.980 20.717 22.207
SSIM↑ 0.549 0.626 0.631 0.651 0.650 0.726
LPIPS↓ 0.554 0.366 0.378 0.322 0.342 0.166

flower
PSNR↑ 19.520 20.930 21.720 21.510 20.392 22.300
SSIM↑ 0.523 0.593 0.595 0.617 0.620 0.724
LPIPS↓ 0.698 0.517 0.530 0.424 0.402 0.191

gallery chair
PSNR↑ 25.600 27.030 28.040 27.130 27.477 28.790
SSIM↑ 0.783 0.823 0.831 0.834 0.870 0.892
LPIPS↓ 0.538 0.401 0.385 0.323 0.166 0.105

gallery pillar
PSNR↑ 25.300 26.970 28.140 27.500 27.067 28.731
SSIM↑ 0.769 0.821 0.831 0.835 0.856 0.884
LPIPS↓ 0.414 0.275 0.274 0.227 0.132 0.087

garden
PSNR↑ 24.490 26.090 26.470 26.500 25.548 27.133
SSIM↑ 0.653 0.695 0.692 0.713 0.738 0.795
LPIPS↓ 0.562 0.427 0.457 0.361 0.247 0.155

poster
PSNR↑ 22.790 25.110 26.380 25.570 24.763 28.333
SSIM↑ 0.742 0.816 0.832 0.831 0.841 0.898
LPIPS↓ 0.509 0.357 0.314 0.290 0.204 0.104

Table 9. Per-scene quantitative evaluation results on EgoNeRF-Ricoh360 dataset, min denotes minutes. 1In some scenes OP43DGS
triggered a CUDA out of memory error before reaching 6k iterations. This sometimes caused the actual training time to be less than 30
minutes. For the scenes ran out of GPU memory at the early stage of optimization, i.e. bricks, bridge under, cat tower, farm, flower,
gallery chair, gallery pillar, garden, poster, we report the OP43DGS results evaluated just a few time before the error occurred.

10



Scene Method NeRF [7] Mip-NeRF 360 [1] TensoRF [2] Instant-NGP [9] 360Roam [4] OP43DGS1 [5] Ours

Bar
PSNR↑ 19.049 21.112 21.517 15.163 21.676 22.234 22.471
SSIM↑ 0.601 0.683 0.707 0.488 0.711 0.769 0.771
LPIPS↓ 0.409 0.324 0.294 0.571 0.235 0.192 0.172

Base
PSNR↑ 21.255 23.178 13.256 15.668 24.093 24.794 24.853
SSIM↑ 0.598 0.692 0.412 0.472 0.725 0.800 0.796
LPIPS↓ 0.400 0.309 0.791 0.616 0.210 0.134 0.106

Cafe
PSNR↑ 20.732 23.508 13.699 17.051 21.969 25.047 25.053
SSIM↑ 0.656 0.746 0.506 0.554 0.720 0.828 0.821
LPIPS↓ 0.378 0.277 0.608 0.521 0.230 0.124 0.109

Canteen
PSNR↑ 19.941 21.851 17.886 15.851 21.984 22.500 22.207
SSIM↑ 0.613 0.690 0.605 0.506 0.680 0.750 0.735
LPIPS↓ 0.427 0.356 0.498 0.549 0.303 0.212 0.209

Center
PSNR↑ 22.439 24.841 14.391 16.566 25.109 25.381 25.152
SSIM↑ 0.699 0.771 0.530 0.590 0.775 0.818 0.808
LPIPS↓ 0.358 0.280 0.783 0.597 0.226 0.196 0.167

Corridor
PSNR↑ 25.342 28.442 14.523 17.722 28.812 28.176 27.798
SSIM↑ 0.754 0.834 0.588 0.618 0.832 0.861 0.848
LPIPS↓ 0.238 0.166 0.676 0.425 0.145 0.106 0.111

Innovation
PSNR↑ 22.482 25.433 12.716 17.121 26.191 26.046 25.885
SSIM↑ 0.667 0.754 0.428 0.519 0.771 0.815 0.806
LPIPS↓ 0.324 0.253 0.799 0.543 0.187 0.162 0.115

Lab
PSNR↑ 24.135 25.830 15.542 19.075 27.667 27.983 28.023
SSIM↑ 0.763 0.833 0.593 0.651 0.855 0.889 0.886
LPIPS↓ 0.239 0.192 0.642 0.414 0.116 0.083 0.075

Library
PSNR↑ 23.909 25.971 13.409 18.450 26.127 26.616 26.345
SSIM↑ 0.656 0.714 0.468 0.519 0.722 0.774 0.767
LPIPS↓ 0.326 0.288 0.836 0.558 0.225 0.193 0.194

Office
PSNR↑ 25.149 25.619 13.409 17.521 26.977 25.632 26.848
SSIM↑ 0.714 0.763 0.468 0.563 0.811 0.798 0.817
LPIPS↓ 0.290 0.245 0.836 0.524 0.145 0.184 0.148

Table 10. Per-scene Quantitative evaluation results on the 360Roam dataset. 1OP43DGS is evaluated at 12k iterations, taking around 40
minutes. Evaluation timing of the other methods are reported in the main paper.

11


