
ShapeMorph: 3D Shape Completion via Blockwise Discrete Diffusion

Jiahui Li1, Pourya Shamsolmoali1*, Yue Lu1, Masoumeh Zareapoor2

1East China Normal University, 2Shanghai Jiao Tong University

1. Experiment Details
1.1. Training Details

We train our encoder for ε = 800 epochs with 32 batch
size. The learning rate is linearly increased to lrmax =
1e−3 in the first ϵ0 = 40 epochs. Then gradually decreased

using the cosine decay schedule lrmax ∗0.51+cos
ϵ−ϵ0
ε−ϵ0 , until

the minimum value of lrmin = 1e − 6. The training pro-
cess for the blockwise diffusion model is set to ε = 400
epochs with a batch size of 32. The learning rate is pro-
gressively increased to lrmax = 2e − 4 within the initial
ϵ0 = 20 epochs. Subsequently, it is progressively reduced
to lrmin = 1e − 6, guided by a monitoring system that
tracks the frequency of no decrease in the loss value, with
a threshold set at 5k iterations. Adamw optimizer is used
with β = [0.9, 0.96].

1.2. Dataset Details

For single-view shape completion, we follow the bench-
mark provided by GenRe [40], training our model on [air-
plane, chair, car] categories, in which each shape contain-
ing 20 views of rendering. For ShapeNet [4], we train our
model using the objects of 13 categories, including [air-
plane, bench, cabinet, car, chair, display, lamp, speaker,
rifle, sofa, table, telephone, vessel]. For PartNet [24], we
adopt the training approach used in other works [33, 35,
43], focusing on the categories [chair, lamp, table]. We ex-
tract occupancy value similar to [22], including 50k volume
query points from the bounding volume ([−1, 1]3) and 50k
near query points from near surface region.

1.3. Baseline Comparison

We retrain all baselines with their original implementa-
tions and hyperparameters for a fair comparison.
cGAN [33] first introduces the concept of multiple point
cloud completions using a GAN-based model, defining this
approach as multi-modal shape completion. We reproduce
their work using their official implementation while follow-
ing our incompleteness setting.

*Correspondence to <pshams55@gmail.com>

PVD [43] operates directly on raw point clouds and pro-
poses a completion method based on a continuous diffusion
model. We follow their setting, using 2048 points as com-
plete point cloud and 512 partial points as condition to im-
plement their work.

SFormer [35] approximate the input into a variable-length
discrete sequence and model the sequence completion based
on an autoregressive model. This model takes point cloud
as input and produce the output as deep implicit function,
specifically occupancy value [22]. We use 2048 points as
input to retrain SFormer following its official implementa-
tion.

AutoSDF [23] represents each 3D shape as 643 Truncated-
SDF (TSDF) and learns latent patch priors using P-VQ-
VAE along with a transformer-based autoregressive model
for 3D shape completion. Similarly, we extract the TSDF
described as [15], and reproduce it with its official imple-
mentation. Note that, the TSDF and the occupancy value
(our representation) both belong to the realm of deep im-
plicit functions, they can both represent shapes as implicit
surfaces. During testing, we sample points on the surface to
calculate errors with the ground truth point cloud.

3DQD [20] represents 3D shapes as 643 Truncated-SDF
(TSDF), using the same P-VQ-VAE as AutoSDF but adopt-
ing a discrete diffusion model for 3D shape completion. We
retrained the model using the official implementation.

1.4. Different settings on ShapeNet

Different to other baselines [33, 35, 43], which can ac-
cept point cloud from arbitrary views, AutoSDF and 3DQD
only accept voxelized TSDF as input. It means the input is
the voxel grids (X ∈ Rn×n×n). Thus, these two works can
only perform incomplete shapes through manually masking
input grids and fail to accept arbitrary incomplete shapes
as cGAN, PVD, and SFormer. In order to perform precise
comparison with these two works, we follow their experi-
ment setting, removing all points from the top half of shapes
(Bottem Half) as incomplete shape to showcase the ability
of our method.

1



N × 3Input points

FPS & KNN

M × 32

32 →256Pointnet

Point patches

M × 256Embedding 
vectors

6 ×
Transforer 

Block 

Transformer encoder

Transformer encoder

Transformer encoder

M × 256

VQ(.)

Latent interpolate

Q × 3 M × 256 latent vectorQuery points

6 ×
Transforer 

Block 

Transformer encoder

Transformer encoder

Transformer encoder

Vector quantify

M × 256

Q × 1 Output

Q × 3

(3+256) → 512

512 → 512

512 → 512

512 → (512-3-256)

512 → 512

512 → 512

512 → 512

512 → 1

MLPQ × (512-256-3)

Q × 256

Encoder Decoder

Vector Quantify

Quantified 
vectors

Interpolated 
vector

Figure 1. Network architecture of our shape encoding schedule. We show the detailed module inside our autoencoder.

1.5. Additional Instructions of Single-view Shape
Completion

Since AutoSDF and 3DQD did not adopt point cloud as
the condition in their official implementation, we directly
take the depth map as a condition, following their approach
in the single-view 3D reconstruction task.

2. Network Architecture of Shape Autoencoder

Our shape autoencoder consists of three components: an
Encoder E, a decoder D and a vector quantizer V Q. Fol-
lowing [38], we represent each 3D shape as an irregular dis-
crete latent sequence. The network architecture is shown in
Fig. 1. Additionally, In our decoder D, we employ a MLP

to predict the occupancy value as outlined in [22]. Specifi-
cally, we interpolate the quantified vectors zqi obtained from
V Q to each query point by:

zq =

M−1∑
i=0

exp(−β∥q− ci∥2)∑M−1
j=0 exp(−β∥q− cj∥2)

zqi , (1)

in which, q is the query point used for surface reconstruc-
tion, while ci is the position of each quantified vector zqi
(which has the same position as the latent vectors). β is a
learnable parameter controlling the smoothness of interpo-
lation. With above operation (Eq. (1)), we get interpolated
vectors with the same size as query points q. With a MLP
we can predict the occupancy value of each query point.



3. Architecture details of Flow transformer
Our denosing network consists of 17 layers of Flow

transformer (FLOT) blocks, each block contains switch op-
eration, self attention, cross attention, and feed forward net-
work (FFN). The dimension of each block is 1024 and the
FFN contains two linear layer, which expand the dimension
to 4096 in the middle layer.


	. Experiment Details
	. Training Details
	. Dataset Details
	. Baseline Comparison
	. Different settings on ShapeNet
	. Additional Instructions of Single-view Shape Completion

	. Network Architecture of Shape Autoencoder
	. Architecture details of Flow transformer

