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1. Further Analysis

Effect of using Different Offsets in Attention Heads.
Section 3.2.2 introduces the shape-guided Gaussian map-
ping combined with multi-head cross-attention. This pro-
cess generates an independent head-specific offset ∆µi and
∆σi for each attention head. To verify the effect of offset,
we remove this offset and make all attention heads share the
same mean µ and variance σ. The results in Table 1 indi-
cate a performance drop of 0.51% in FACC and 0.92% in
ACC without the offset highlighting the importance of the
head-specific offset.

Table 1. Effect of using offsets in attention heads.

FACC AACC
w/o offset 74.70 58.82
w/ offset 75.21 (+0.51) 59.74 (+0.92)

Effect of Adaptive Coefficient Vector α. This part stud-
ies the effect of using adaptive coefficient vector α (refer
to Section 3.1.2). Our method adaptively balances the at-
tention to central, angular, and radial difference operations,
with α = Softmax(H(x′)). To demonstrate its effective-
ness, we manually set fixed values α = {1/3, 1/3, 1/3},
equalizing the importance of the three convolutional differ-
ential operations. As shown in Table 2, the adaptive α with
the learnable coefficients achieves higher accuracy than the
fixed weight coefficients, as expected.

Table 2. Effect of adaptive coefficient vector α.

FACC AACC
α = {1/3, 1/3, 1/3} 74.76 58.74
α = Softmax(H(x′)) 75.21 (+0.45) 59.74 (+1.00)

Further Exploration of Prediction Order. This part fur-
ther discusses the effect of using various prediction orders.
As studied in the main text, the inverted order prediction
performs better than the regular forward order. However,
the performance of using mixed order has not been ex-
plored. Note that the annotation length for facial manip-
ulation is five. Besides the complete forward order (5FO)
and inverted order (5IO), we also study a set of mixed or-
ders, which includes three forward orders and two inverted
orders (3FO, 2IO), and two forward orders and three in-
verted orders (2FO, 3IO). The results are shown in Table 3,

indicating that the fully inverted order performs best.

Table 3. Effect of various orders.
Methods FACC AACC

5 FO, 0 IO 71.85 54.26
3 FO, 2 IO 71.73 53.59
2 FO, 3 IO 72.76 55.89
0 FO, 5 IO 75.21 59.74

Different Stem Architectures. We conduct additional ex-
periments using different stem architectures. As shown in
Table 4, our method improves alongside the improvement
of the network capabilities, achieving the best results with
ResNet-101. This fully aligns with our expectation that a
stronger stem can further improve the ability to capture tam-
pering features.

Table 4. Performance of stem architectures.

FACC AACC
Resnet-18 72.96 56.09
Resnet-34 75.21 59.74
Resnet-50 75.53 59.67

Resnet-101 75.59 60.25

Limitations. Since our method is designed specifically for
sequential DeepFake detection, it shares a limitation with
existing methods in its capacity for one-step DeepFake de-
tection. In future work, we aim to explore solutions that can
improve generalizability across both one-step and sequen-
tial DeepFake detection.

1.1. More Details of Reproduction

We reproduce the methods of DRN, MA, Two-stream,
and SeqFake-Former using their official codes and rigor-
ously follow the training instructions. Note that the repro-
duced results of DRN, MA, and Two-stream are consistent
with, even better than those reported in Paper [1]. How-
ever, the results of SeqFake-Former are slightly lower than
its original report. This is because these methods are origi-
nally executed on four GPUs, whereas we only use a single
GPU in reproduction due to limited computing resources.
This difference can restrict the usage of large batch sizes,
leading to a certain performance drop.
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Figure 1. Shape priors visualization.

2. More Visualizations

Shape Priors Visualization. We visualize the probability
maps S in Fig. 1 to assess whether shape priors are well
learned. Note the manipulation annotations of these two im-
ages are eyebrow-eye-hair-nose-lip and nose-eyebrow-lip-
eye-hair, respectively. It can be seen that the correspond-
ing probability map can roughly reflect the manipulation
regions.

Examples of Challenging Scenarios. Fig.2 shows exam-
ples of images applying post-processing operations, includ-
ing Gaussnoise, Image compression, ColorJitter, ToGray,
and RGBShift (implemented using albumentations API).

The parameters for each operation are as follows: For Gaus-
sian noise, we set the var-limit range from 10 to 50, with a
mean of zero, and independently sample the noise for each
channel. For the image compression operation, the quality
bounds are set from 25 to 50. For jittering colors, we use
a contrast and brightness setting of 0.7 to 1.4, while keep-
ing the saturation unchanged. For the RGB shift operation,
we set the shift-limit values for the three channels to range
from -20 to 20.

GaussNoise  ImageCompression ColorJitter RGBShift ToGray
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Figure 2. Examples of challenging scenarios.

More Attention Visualizations. Fig 3 presents more at-
tention visualization results of our method. It can be seen
that our model can capture the manipulated regions with
various lengths of manipulation annotations, including Eye,
Eye-Nose, Eyebrow, Eye-Nose-Lip-Eyebrow respectively.
Notably, our method can maintain focused attention on one
manipulation without affecting the attention of other manip-
ulated attributes.
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Figure 3. More attention visualizations of different manipulating
annotations.
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