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Section 1 details our network structures. Section 2 de-
scribes the generation process of the simulation dataset, in-
cluding the kernel calculation for synthetic blur and coarse
depth sampling. Section 3 provides camera settings and cal-
ibration for real data collection. Section 4 provides imple-
mentation details. Section 5 and Section 6 present addi-
tional experimental results for the simulation dataset and
real data, respectively. Section 7 discusses the network
structure for kernel prior, our considerations for mitigating
the intrinsic latency and divergence problems for the DIP-
based method, and data acquisition for paired hyperspectral
and depth information.

1. Network Architecture
1.1. Depth refinement network

The depth refinement network GD follows a U-Net ar-
chitecture inspired by [1] with an encoder-decoder structure
and skip connections, as illustrated in Fig. 1. The encoder
consists of five basic blocks, connected by four downsam-
pling steps using 2× 2 max pooling. Four basic blocks are
used in the decoder. Before each, the output of the previous
block is upsampled with a 2×2 transposed convolution and
concatenated with the corresponding feature map from the
encoder to form a skip connection. Each block contains two
3 × 3 convolution layers, followed by batch normalization
and PReLU. The final decoder layer is 3 × 3 convolution
to generate a single-channel depth map. A sigmoid func-
tion is applied to the output, followed by post-processing to
rescale the relative depth to an absolute range.

1.2. Multi-head kernel generator

For the multi-head kernel generator GK , we use a U-
Net [12] with multiple output layers as shown in Fig. 2.
This structure generates a set of kernels, each with dimen-
sions C × 25 × 25 (C is the number of channels in the hy-
perspectral imagery), enabling spectral- and spatial-variant
degradation for model-based deblurring.

2. Simulation Dataset

2.1. Wavelength- and depth-variant kernels

To generate blurred hyperspectral imagery (HSI) from
the sharp ground truth in HyperSpectral-Depth (HSD)
dataset [1], we calculate wavelength- and depth-variant
kernels using the geometric optical model of the single-
lens imaging system. Specifically, we model blur kernels
as Gaussian functions with standard deviations that vary
with wavelength and depth. Figure 3 illustrates the imag-
ing process for the single lens. When the lens configu-
ration is fixed, only light rays with a specific combina-
tion of wavelength and depth are focused on the sensor
plane. Other light rays cause a circle of confusion (CoC)
with wavelength- and depth-variant sizes related to the stan-
dard deviations of blur kernels. Although real hyperspec-
tral imaging systems are much more complex with multiple
optical components, this simplified illustration effectively
demonstrates the property of defocus blur caused by lens
refraction. We assume a point source of light at scene depth
z. After being refracted by the lens, the light is focused at a
distance s′ that deviates from the sensor plane, resulting in
the CoC. The radius of the CoC is calculated as follows:
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where A is the aperture size, s is the sensor distance which
depends on the focused distance of the camera, and F (λ) is
the wavelength-dependent focal length. The corresponding
Gaussian blur kernel has a standard deviation σ(λ, z) which
is a constant multiple of C(λ, z) [17]. For each sample,
blur kernels from three optical configurations with different
focal lengths and focused distances are used for data simu-
lation. Figure 4 shows the blur kernels calculated with the
focal length of 16mm (for 550nm) and a focused distance of
1.2m. The wavelength-dependent focal length is calculated
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Figure 1. An illustration of the depth refinement network, including the details of the basic block. For each block, the number of input
channels is shown at the top, and the number of output channels is shown at the bottom.

Figure 2. An illustration of the multi-head kernel generator with
multiple output layers, showing input channels at the top and out-
put channels at the bottom for each block.

using the refractive index of the lens material NOA611.
Corresponding blurring results are shown in Fig. 5. As the
wavelength increases, the nearer object exhibits increasing
blur, while the farther object becomes progressively sharper.

2.2. Depth processing

To simulate coarse depth in real-world scenarios, we ran-
domly sample 4% of the pixels from the ground truth depth
to create sparse depth and add Gaussian noise, as shown
in Fig. 6. A simple nearest-neighbor interpolation is ap-

1https://refractiveindex.info/?shelf=other&book=Norland NOA-
61&page=Norland#google vignette

Figure 3. Single-lens imaging system. A light ray (blue line) with
specific wavelength and depth is focused on the sensor plane lo-
cated at a distance s behind the lens. Meanwhile, the light ray
(orange line) from a point source at depth z is focused at s′, in
front of the sensor plane, resulting in CoC with a radius of C.

plied to the coarse depth to illustrate its degradation. Noise
and errors are introduced, particularly at object boundaries,
due to the degradation.

3. Real Data
3.1. Camera settings

For the hyperspectral camera (EBA JAPAN NH-9), we
use a 16mm focal length lens and set the focused distance to
1m for scenes within a depth range of 0.4–1.6m. The aper-
ture is fully opened, with an f-number of 1.4 to ensure suffi-
cient incident light and maintain the spectral accuracy. Ad-
ditionally, illumination intensity and sensor sensitivity vary
with wavelength. To achieve low-noise capturing in general
while avoiding over-exposed bands, we capture each scene
twice with different exposure times and select the optimal
one for each band.



Figure 4. Wavelength- and depth-variant Gaussian blur kernels.

Figure 5. Degraded spectral images with the blur kernels illustrated in Fig. 4.

Figure 6. Coarse depth (b) is generated by sampling 4% pixels
in ground truth (a) and adding Gaussian noise. The interpolation
result (c) of the coarse depth illustrates the degree of degradation.

3.2. Calibration

The depth maps are captured using a separate RGB-
depth camera (Azure Kinect DK), which has a different field
of view and resolution compared to the hyperspectral cam-
era, resulting in misalignment with the captured HSIs, as
shown in Fig. 7(a-c). To address this issue, we perform
careful calibration to register the depth maps to the coor-
dinate system of HSIs. Specifically, we first extract the in-
trinsic matrix and distortion coefficients for both cameras.

Then, we compute the rotation matrix and the translation
vector that project 3D points from the RGB-depth camera
to the hyperspectral camera. All calibrations are performed
using the OpenCV API. For each pixel in the depth map,
we project it onto the 2D coordinate system of the HSIs
using the aforementioned parameters and the depth value.
Occlusion filtering is applied to the projected depth to han-
dle the pixels that are visible in the RBG-depth camera but
occluded in the hyperspectral camera2. Figure 7(d) shows
the registered depth, which is well-aligned with the spectral
imagery as shown in (e).

4. Implementation Details

4.1. Proposed method

For the simulation experiments, we apply nearest-
neighbor interpolation to the coarse depth before concate-
nating it with the blurred HSI to form the input for the re-
finement network. For real data, we use the coarse depth

2https://github.com/eugeniu1994/Stereo-Camera-LiDAR-
calibration.git



Figure 7. The RGB image (b) and depth map (c) captured by the RGB-depth camera are misaligned with the spectral imagery (a) captured
by the hyperspectral camera. We perform calibration to register the depth map to the HSI coordinate system, resulting in (d). The overlap
(e) between the registered depth and spectral imagery demonstrates the accuracy of registration.

directly without interpolation. The center depth for gen-
erating the soft-weight map is adaptively determined for
each sample by dividing the input depth into m levels us-
ing a spacing-increasing discretization strategy [6]. We
set the standard deviation of the Gaussian function to 0.1
in the soft-weight map and 6 in the kernel regularization
term. The experiments are conducted on a PC with an
NVIDIA RTX A5000 GPU. The total model size is approx-
imately 31MB for the synthetic experiments and 33MB for
the real experiments. For the simulated data with dimen-
sions 29 × 512 × 512, the processing time is 806 seconds
for 2,000 iterations. For the real data with 121 channels, the
processing time is 912 seconds for 800 iterations.

4.2. Comparison methods

All comparison methods, except for PnP [14], take RGB
or grayscale images as the input. These methods are ap-
plied to HSI deblurring in a channel-wise manner, with de-
blurring conducted separately for each wavelength. For the
referenced-based ABGI [9], we use the channel with the
highest PSNR as the reference for the simulation dataset.
For real data, where ground truth is unavailable for calcu-
lating PSNR, we use the 60−th channel (700nm) as the ref-
erence since our captured HSIs are typically less blurry and
noisy around the center of the wavelength range and more
degraded at the edges. For the non-blind method PnP [14]
with a deep denoiser as the prior, we use its pre-trained prior

along with blur kernels estimated by DCP [10] for the sim-
ulated data and PMP [16] for the real data.

5. Additional Results on Simulation Dataset
Figure 8 provides qualitative comparisons between the

proposed method and all comparison methods. Model-
based methods such as (c) DCP [10] and (e) SelfDeblur [11]
exhibit significant distortion and artifacts because they esti-
mate spatially uniform kernels without considering depth-
variant blurriness. Although other comparison methods
have fewer artifacts, they are less effective when encounter-
ing large-degree blurriness, producing results that are still
over-smoothed. This is particularly evident in the learning-
based methods (f) IFAN [8] and (g) NAFNet [4]. Our
method achieves superior performance with better texture
restoration and fewer artifacts. The error maps for three
HSIs, calculated between the ground truth and deblurred re-
sults, further demonstrate the effectiveness of our method,
as shown in Fig. 9. We visualize the results of the abla-
tion study in Fig. 10. Without considering depth variation,
i.e., estimating spatial-invariant blur kernels, the texture of
the closer object is successfully restored while the farther
object exhibits severe artifacts (c). Integrating depth guid-
ance through either binary masks or soft-weight maps re-
duces these artifacts (d-e). The final model, which uses soft-
weight maps, outperforms the mask-based approach, deliv-
ering sharper textures at 700nm and improved color fidelity.



Figure 8. Spectral images at 420nm, 580nm, and 700nm from two HSIs. The fourth and eighth columns display synthetic RGB images
created by uniformly combining wavelengths of 420-500nm for the blue channel, 510-610nm for the green channel, and 620-700nm for
the red channel.



Figure 9. Error maps between ground truth HSIs and deblurred results. For channel-wise methods such as DCP [10], PMP [16], Self-
Deblur [11], IFAN [8], NAFNet [4], and ABGI [9], we concatenate the single channel results to form the deblurred HSIs used for error
calculation.

Figure 10. Qualitative results of ablation study. (c) Wavelength-
aware deblurring without considering depth. (d) Wavelength- and
Depth-aware deblurring with binary masks. (e) Wavelength- and
Depth-aware deblurring with soft-weight maps (our final model).

6. Additional Results on Real Data

Figure 11 present additional deblurred results on real
blurred HSIs captured by our set-up, corresponding to sam-
ples (4-6) in the Tab. 3 of main paper. We also show de-
tailed deblurred results of an extremely degraded channel
(400nm) in Fig. 12. Our method produces sharper textures
with fewer color fringes and artifacts compared to others.

7. Discussions

7.1. Network structures for kernel prior

For the kernel prior in DIP-based deblurring methods,
Wang et al. [15] represent the kernel with a convolutional
neural network (CNN) to leverage DIP for blur kernels.
While, Ren et al. [11] argue that DIP is designed for cap-
turing prior information in natural imagery and may not
be favorable for kernel prior. Given the small parameter
amount of the 2D blur kernel in their problem setting, they
utilize a fully-connected network (FCN) to model the kernel
prior, which demonstrates superior performance compared
to Double-DIP [7] using CNNs for both image and kernel
prior. In contrast to the use of neural networks, whether
CNNs or FCNs, a recent study uses a normalized array to
directly represent the blur kernel, achieving comparable de-
blurring performance with that of FCN [2]. Consequently,
the optimal network structure for capturing the prior infor-
mation of the degradation kernel in deblurring and its rela-
tionship with kernel features remain open questions.

We adopt a CNN with multiple branches at the out-



Figure 11. Original captures and deblurred results for real HSIs. The false color images are generated by assigning 400nm, 420nm, and
1000nm to blue, green, and red channels, respectively.

put layer to model the depth-dependent multi-channel blur
kernel from the considerations of the kernel structure and
model size. The CNN is more suitable for outputting multi-
ple 3D kernels than the FCN which needs reshaping. Also,
the kernels for different wavelengths and depths usually
share similar spatial shape determined by the optics while
having different spatial sizes, which makes the CNN more
favorable with its ability to capture spatial features. On
the other hand, the CNN is more efficient for 3D ker-
nels. For example, to generate a 3D kernel with the size
of 29 × 25 × 25, the CNN (three-stage U-Net [12]) has
about 0.15 million parameters, significantly less than the
FCN with a single hidden layer (479 million).

7.2. Considerations for latency and divergence
problems

Although DIP-based methods offer the advantage of re-
quiring no training process or dataset, they suffer from high
latency due to iterative forward and backward network pro-
cesses. In our model, we estimate multiple multi-channel
kernels, which involves more parameters and thus increases
processing time. To reduce the latency, we employ a CNN
with shared parameters for depth-variant kernels. Addition-
ally, we adaptively divide the depth range into a few levels
for each sample instead of estimating kernels for the entire
depth range, thereby alleviating the computational burden.
Another concern is that DIP-based methods are sensitive to
hyperparameter tuning, and inappropriate parameters even
lead to divergence. To address this, we apply an additional
regularization term to encourage the kernel to have rela-

tively large values in the central region, reflecting the prop-
erty of defocus blur. There is also a smoothness regulariza-
tion term to prevent the network from converging to delta
results. Further improvements can be achieved by incorpo-
rating additional image priors, such as total variation [3].
A diffusion prior on the kernel can also be considered, as it
can be trained on synthetic kernels without the need for HSI
data [5].

7.3. HSD data acquisition

Our work focuses on the defocus blur problem in
wide-range HSI imaging, and first integrates coarse depth
guidance into HSI deblurring. We also simultaneously
refine depth, providing a practical approach for high-
quality paired HSD data acquisition. This multi-modality
with both semantic and geometric information is essen-
tial for scene understanding. Existing acquisition strate-
gies can be divided into two types: combination-based and
reconstruction-based. The former combines two different
imaging mechanisms for two modalities, such as coded
aperture-based HSI imaging and time-of-flight system for
depth imaging [13]. This strategy usually suffers from a
large form factor, which limits its application in laboratory
environments. In contrast, the reconstruction-based method
uses compact devices with learnable optics to capture RGB
images and reconstruct HSI and depth information after-
wards [1]. This strategy relies heavily on the dataset to op-
timize the reconstruction algorithm and optics. Currently,
the HSD dataset is limited in both data amount and wave-
length range (visible range only). Our approach captures



Figure 12. Original captures and deblurred results of an extremely degraded channel (400nm) in HSIs.

wide-range HSI and depth with separate cameras followed
by registration and restoration, which is more practical for
HSD data acquisition in various environments, promoting
future developments for HSD imaging devices and multi-
modal scene understanding.
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