Supplementary Material for
VMAS: Video-to-Music Generation via
Semantic Alignment in Web Music Videos

Music Video A

Music Video B

Q1: Which music do you think has the better music quality?

O Aiis better
O Cannot tell
O Biis better

Q2: Which background music has better synchronization between music beats and visual dynamics?

O Ais better
O Cannot tell
O B is better

Figure 1. Human Evaluation. Human raters are asked to select the generated music that best aligns with a given video and the best music
quality. We report the average human preference rate for each method. Note that all samples are present in a random order.

1. Appendix Overview
Our appendix consists of:
1. Implementation Details.
. Human Evaluation Details.
. Music Genre Analysis of DISCO-MV
. Additional Quantitative Results.

. Qualitative Results.
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. A Supplementary Video.

2. Implementation Details

Audio Tokenization Model and Patterns. To transform
a continuous 32 kHz audio into discrete audio tokens, we
leverage the pretrained EnCodec [3] with a stride of 640, re-
sulting in a frame rate of 50 Hz and an initial hidden feature
size of 64. The embeddings are quantized using a Resid-
ual Vector Quantization (RVQ) with four quantizers, each
having a codebook size of 2048. As for the codebook pat-
tern, we adopt the delay interleaving pattern [1] to translate
10 seconds of audio into 500 autoregressive steps (audio to-
kens).

Efficient Video Encoder. Given an input video, we ex-
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Figure 2. Music Genre Distribution. We present the GTZAN genres [12] for the DISCO-MV dataset. Genres are assigned to each
soundtrack based on the maximum cosine similarity between its sound embedding and the corresponding genre (text) embedding.

—+— MusicCaps Test Set
4.54 —— DISCO-MV Test Set
4.0
()]
I3s
3.01
2.5

20 40 60 80 100

Percentage of DISCO-MV Training Set
Figure 3. Impact of the Training Data Size. We train our method
with increasing subsets of DISCO-MV and then evaluate on Mus-
icCaps (Red) and DISCO-MV (Blue) using FAD metric (the lower
the better). Our results illustrate that the size of video-music train-
ing data has a significant impact on the generated music quality.
These results justify our approach of using Web videos for scaling
our video-music training data.

tract frames at a 9.6 FPS rate, resulting in a total of 96
video frames with a resolution of 224 x 224 for a 10-
second clip. We utilize the pretrained Hiera-Base model
[10], which consists of 24 layers and performs downsam-
pling three times through pooling. These 96 video frames
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Figure 4. Impact of the Training Data Size. We train VMAS
with increasing subsets of DISCO-MV and then report the Music-
Video Alignment (MV Align) metric on MusicCaps (Red) and
DISCO-MV (Blue).

are initially processed by a 3D CNN with a [3 x 7 x 7] ker-
nel, a [2 X 4 x 4] stride, and a [1 x 3 x 3] padding for video
tokenization. Subsequently, we adjust the original spatial
downsampling method in Hiera, namely Q-Pooling, which
utilizes the same size of pooling kernels and strides.

The Q-Pooling kernel sizes for the first and second
downsampling stages are increased from 2 to 4 (at the 2"
layer) and from 2 to 7 (at the 5™ layer), respectively. For



Table 1. Video-to-Music Retrieval Results. We conduct a comparison of our designed efficient video encoder with existing video
encoders [9, 10] for video-to-music retrieval. Our efficient video encoder is generalizable to the video-to-music retrieval task.

Method Video Encoder #Frames V2M R@11 V2MR@10 T
CLIP [9] 16 4.2 17.3

MVPULHT Hiera [10) 16 48 18.1

VMAS VMAS 96 6.3 26.7

the third downsampling stage, the Q-Pooling kernel size is
maintained at 2 X 2, implemented at the 21" layer. At the
24" layer, the final layer, the model only increases the chan-
nel dimension through the liner projection, yielding video
representations of dimension 48 x 1 x 1 x 768.
Autoregressive Audio Decoder. = We adopt the au-
toregressive transformer models of pretrained MusicGen-
medium [1] as our autoregressive audio decoder. The de-
coder consists of 48 transformer layers in a feature dimen-
sion of 1536 with 24 standard causal and multi-head atten-
tion blocks.

Optimiazation. We train VMAS on 10-second video clips
from DISCO-MV using the AdamW optimizer [8] with a
batch size of 8 on each GPU. The training takes approxi-
mately four days using 32 NVIDIA GPUs across 4 nodes.
Each node is equipped with 8 GPUs, 92 CPUs, and 1000G
of memory. We utilize D-Adaptation [2] to select the overall
learning rate automatically. A cosine learning rate schedule
with a warmup of 4000 steps is deployed alongside an ex-
ponential moving average with a decay of 0.99. We set v in
eq(3) to 0.05 and S in the main draft to 0.25.

3. Human Evaluation Details

As depicted in Figure 1, given a pair of video-music sam-
ples with the same video but different music generated by
two methods, human raters are asked to choose their pre-
ferred video-music sample based on the following prompts:
1) Which music do you think has the better music quality?
and 2) Which background music has better synchronization
between music beats and visual dynamics?” For each ques-
tion, the subjects can choose one of the two methods or the
third option ”Cannot tell.” We collected approximately 200
subjects in the human evaluation by presenting results from
arandom method against VMAS. In each survey, Each con-
ducts 10 evaluations randomly selected among 50 evalua-
tions.

4. Music Genre Analysis of DISCO-MV

Following the setup in DISCO-10M [7], we implement
zero-shot music genre classification for DISCO-MV by uti-
lizing pretrained CLAP [13] embeddings extracted from
10-second music clips. Genre classification is conducted

through genre-specific prompts ("This audio is a <genre>
song”) and identifying the genre via top-1 cosine similarity
in a shared latent space for each music clip. In Figure 2, we
report the GTZAN genre distribution [12] of our DISCO-
MYV dataset. Jazz and disco genres are predominant while
ensuring a wide range of musical diversity. However, we
note that the blues genre has few samples in DISCO-MV
due to the limited number of blues music in the original
DISCO-10M dataset.

5. Additional Quantitative Results

Impact of Training Data Size. Similar to our analysis
in the main draft, in Figure 3 and Figure 4, we visual-
ize our model’s performance on DISCO-MYV as the train-
ing data increases in the FAD and Music-Video Alignment
(MV Align) metrics, respectively. We observe consistent
improvement in both metrics when the DISCO-MV data
size increases. Despite the Vid2MLDM model not account-
ing for low-level music-video beat synchronization, its per-
formance improves with more training data. These addi-
tional results confirm that our large-scale DISCO-MV can
improve music-video beat alignment as well as music qual-
ity with larger training data scales.

Video-Music Retrieval Task. To evaluate our ap-
proach’s generalization capability, in Table 1, we also com-
pare VMAS against MVPt [11] for the video-to-music re-
trieval tasks on DISCO-MV. Following the pipeline and size
evaluation set of video-to-music retrieval framework [11],
we randomly sample 2,000 videos in the DISCO-MV test
set and extracted music and video representations (i.e., fea-
tures in Eq. (2) of main paper) using our trained model on
video-to-music generation task. We used these feature rep-
resentations for the video-to-music retrieval task and mea-
sured performance using the standard Recall@1 and Re-
call@10 metrics. For a fair comparison, we implement
MVPt [11] using CLIP [9] and Hiera [10] as the video en-
coders and train it under the same conditions as VMAS.
These results indicate that VM AS is more accurate and gen-
eralizes better compared to MVPt (i.e., 26.7 vs. 18.1 and
17.3 R@10) on the video-to-music task.
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Figure 5. Qualitative Video-to-Music Generation Results. Here, we illustrate qualitative music generation results for a given silent video
input. The generated music sample is visualized as a spectrogram. We compare the results of our model with CMT [4], Video2Music [6]),
VidMusicGen [1] and Vid2MLDM [5]. We note that most prior video-to-music generation approaches produce music beats of uniform
intensity. In contrast, our model generates music beats that align well with dynamic video content, i.e., significant movements when a
surfer changes direction during a sharp turn in this particular example.

6. Qualitative Results

In Figure 5, we visualize our generated music results
as a 2D spectrogram. We also include the results of the
following video-to-music generation methods: CMT [4],
Video2Music [6], VidMusicGen [1] and Vid2MLDM [5].
All results are obtained using the same video input shown
at the top of the Figure.

Based on these results, we observe that symbolic mu-
sic generation methods(i.e., CMT and Video2Music) often
generate music with uniform music beat patterns, which is
suboptimal as the music fails to match the temporal dy-
namics of the video content. Furthermore, the existing
waveform methods (i.e., VidMusicGen and Vid2MLDM)
struggle to generate music consistently synchronized with
dynamic low-level video events.In comparison, the music
beats generated by our model (highlighted in red boxes)
have higher intensity when a surfer in the video performs a
dramatic turn. This demonstrates that our model generates
music that reflects the pace and magnitude of the actions
occurring in the video.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David
Kant, Gabriel Synnaeve, Yossi Adi, and Alexandre
Défossez. Simple and controllable music generation.
In NeurlPS, 2023. 1, 3, 4

Aaron Defazio and Konstantin Mishchenko.
Learning-rate-free learning by d-adaptation. In
ICML, 2023. 3

Alexandre Défossez, Jade Copet, Gabriel Synnaeve,
and Yossi Adi. High fidelity neural audio compres-
sion. TMLR, 2023. 1

Shangzhe Di, Zeren Jiang, Si Liu, Zhaokai Wang,
Leyan Zhu, Zexin He, Hongming Liu, and Shuicheng
Yan. Video background music generation with con-
trollable music transformer. In ACM MM, 2021. 4

Deepanway Ghosal, Navonil Majumder, Ambuj
Mehrish, and Soujanya Poria. Text-to-audio genera-
tion using instruction guided latent diffusion model.
In ACM MM, 2023. 4

Jaeyong Kang, Soujanya Poria, and Dorien Her-
remans. Video2music: Suitable music generation
from videos using an affective multimodal transformer
model. arXiv Preprint, 2023. 4

Luca Lanzendorfer, Florian Groétschla, Emil Funke,
and Roger Wattenhofer. Disco-10m: A large-scale
music dataset. In NeurIPS, 2023. 3

Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. arXiv Preprint, 2017. 3

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. Learning transferable visual models from nat-
ural language supervision. In ICML, 2021. 3

Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen
Wei, Haoqi Fan, Po-Yao Huang, Vaibhav Aggarwal,
Arkabandhu Chowdhury, Omid Poursaeed, Judy Hoff-
man, et al. Hiera: A hierarchical vision transformer
without the bells-and-whistles. In ICML, 2023. 2, 3

Didac Suris, Carl Vondrick, Bryan Russell, and Justin
Salamon. It’s time for artistic correspondence in music
and video. In CVPR, 2022. 3

George Tzanetakis and Perry Cook. Musical genre
classification of audio signals. TASLP, 2002. 2, 3

Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui,
Taylor Berg-Kirkpatrick, and Shlomo Dubnov. Large-
scale contrastive language-audio pretraining with fea-
ture fusion and keyword-to-caption augmentation. In
ICASSP, 2023. 3



	. Appendix Overview
	. Implementation Details
	. Human Evaluation Details
	. Music Genre Analysis of DISCO-MV
	. Additional Quantitative Results
	. Qualitative Results

