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Figure 1. Human Evaluation. Human raters are asked to select the generated music that best aligns with a given video and the best music
quality. We report the average human preference rate for each method. Note that all samples are present in a random order.

1. Appendix Overview

Our appendix consists of:

1. Implementation Details.

2. Human Evaluation Details.

3. Music Genre Analysis of DISCO-MV

4. Additional Quantitative Results.

5. Qualitative Results.

6. A Supplementary Video.

2. Implementation Details

Audio Tokenization Model and Patterns. To transform
a continuous 32 kHz audio into discrete audio tokens, we
leverage the pretrained EnCodec [3] with a stride of 640, re-
sulting in a frame rate of 50 Hz and an initial hidden feature
size of 64. The embeddings are quantized using a Resid-
ual Vector Quantization (RVQ) with four quantizers, each
having a codebook size of 2048. As for the codebook pat-
tern, we adopt the delay interleaving pattern [1] to translate
10 seconds of audio into 500 autoregressive steps (audio to-
kens).
Efficient Video Encoder. Given an input video, we ex-
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Figure 2. Music Genre Distribution. We present the GTZAN genres [12] for the DISCO-MV dataset. Genres are assigned to each
soundtrack based on the maximum cosine similarity between its sound embedding and the corresponding genre (text) embedding.
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Figure 3. Impact of the Training Data Size. We train our method
with increasing subsets of DISCO-MV and then evaluate on Mus-
icCaps (Red) and DISCO-MV (Blue) using FAD metric (the lower
the better). Our results illustrate that the size of video-music train-
ing data has a significant impact on the generated music quality.
These results justify our approach of using Web videos for scaling
our video-music training data.

tract frames at a 9.6 FPS rate, resulting in a total of 96
video frames with a resolution of 224 × 224 for a 10-
second clip. We utilize the pretrained Hiera-Base model
[10], which consists of 24 layers and performs downsam-
pling three times through pooling. These 96 video frames
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Figure 4. Impact of the Training Data Size. We train VMAS

with increasing subsets of DISCO-MV and then report the Music-
Video Alignment (MV Align) metric on MusicCaps (Red) and
DISCO-MV (Blue).

are initially processed by a 3D CNN with a [3× 7× 7] ker-
nel, a [2× 4× 4] stride, and a [1× 3× 3] padding for video
tokenization. Subsequently, we adjust the original spatial
downsampling method in Hiera, namely Q-Pooling, which
utilizes the same size of pooling kernels and strides.

The Q-Pooling kernel sizes for the first and second
downsampling stages are increased from 2 to 4 (at the 2nd

layer) and from 2 to 7 (at the 5th layer), respectively. For



Table 1. Video-to-Music Retrieval Results. We conduct a comparison of our designed efficient video encoder with existing video
encoders [9, 10] for video-to-music retrieval. Our efficient video encoder is generalizable to the video-to-music retrieval task.

Method Video Encoder #Frames V2M R@1 ↑ V2M R@10 ↑

MVPt [11] CLIP [9] 16 4.2 17.3
Hiera [10] 16 4.8 18.1

VMAS VMAS 96 6.3 26.7

the third downsampling stage, the Q-Pooling kernel size is
maintained at 2 × 2, implemented at the 21st layer. At the
24th layer, the final layer, the model only increases the chan-
nel dimension through the liner projection, yielding video
representations of dimension 48× 1× 1× 768.
Autoregressive Audio Decoder. We adopt the au-
toregressive transformer models of pretrained MusicGen-
medium [1] as our autoregressive audio decoder. The de-
coder consists of 48 transformer layers in a feature dimen-
sion of 1536 with 24 standard causal and multi-head atten-
tion blocks.
Optimiazation. We train VMAS on 10-second video clips
from DISCO-MV using the AdamW optimizer [8] with a
batch size of 8 on each GPU. The training takes approxi-
mately four days using 32 NVIDIA GPUs across 4 nodes.
Each node is equipped with 8 GPUs, 92 CPUs, and 1000G
of memory. We utilize D-Adaptation [2] to select the overall
learning rate automatically. A cosine learning rate schedule
with a warmup of 4000 steps is deployed alongside an ex-
ponential moving average with a decay of 0.99. We set α in
eq(3) to 0.05 and β in the main draft to 0.25.

3. Human Evaluation Details
As depicted in Figure 1, given a pair of video-music sam-

ples with the same video but different music generated by
two methods, human raters are asked to choose their pre-
ferred video-music sample based on the following prompts:
1) Which music do you think has the better music quality?
and 2) Which background music has better synchronization
between music beats and visual dynamics?” For each ques-
tion, the subjects can choose one of the two methods or the
third option ”Cannot tell.” We collected approximately 200
subjects in the human evaluation by presenting results from
a random method against VMAS. In each survey, Each con-
ducts 10 evaluations randomly selected among 50 evalua-
tions.

4. Music Genre Analysis of DISCO-MV
Following the setup in DISCO-10M [7], we implement

zero-shot music genre classification for DISCO-MV by uti-
lizing pretrained CLAP [13] embeddings extracted from
10-second music clips. Genre classification is conducted

through genre-specific prompts (”This audio is a <genre>
song”) and identifying the genre via top-1 cosine similarity
in a shared latent space for each music clip. In Figure 2, we
report the GTZAN genre distribution [12] of our DISCO-
MV dataset. Jazz and disco genres are predominant while
ensuring a wide range of musical diversity. However, we
note that the blues genre has few samples in DISCO-MV
due to the limited number of blues music in the original
DISCO-10M dataset.

5. Additional Quantitative Results

Impact of Training Data Size. Similar to our analysis
in the main draft, in Figure 3 and Figure 4, we visual-
ize our model’s performance on DISCO-MV as the train-
ing data increases in the FAD and Music-Video Alignment
(MV Align) metrics, respectively. We observe consistent
improvement in both metrics when the DISCO-MV data
size increases. Despite the Vid2MLDM model not account-
ing for low-level music-video beat synchronization, its per-
formance improves with more training data. These addi-
tional results confirm that our large-scale DISCO-MV can
improve music-video beat alignment as well as music qual-
ity with larger training data scales.

Video-Music Retrieval Task. To evaluate our ap-
proach’s generalization capability, in Table 1, we also com-
pare VMAS against MVPt [11] for the video-to-music re-
trieval tasks on DISCO-MV. Following the pipeline and size
evaluation set of video-to-music retrieval framework [11],
we randomly sample 2,000 videos in the DISCO-MV test
set and extracted music and video representations (i.e., fea-
tures in Eq. (2) of main paper) using our trained model on
video-to-music generation task. We used these feature rep-
resentations for the video-to-music retrieval task and mea-
sured performance using the standard Recall@1 and Re-
call@10 metrics. For a fair comparison, we implement
MVPt [11] using CLIP [9] and Hiera [10] as the video en-
coders and train it under the same conditions as VMAS.
These results indicate that VMAS is more accurate and gen-
eralizes better compared to MVPt (i.e., 26.7 vs. 18.1 and
17.3 R@10) on the video-to-music task.
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Figure 5. Qualitative Video-to-Music Generation Results. Here, we illustrate qualitative music generation results for a given silent video
input. The generated music sample is visualized as a spectrogram. We compare the results of our model with CMT [4], Video2Music [6]),
VidMusicGen [1] and Vid2MLDM [5]. We note that most prior video-to-music generation approaches produce music beats of uniform
intensity. In contrast, our model generates music beats that align well with dynamic video content, i.e., significant movements when a
surfer changes direction during a sharp turn in this particular example.

6. Qualitative Results
In Figure 5, we visualize our generated music results

as a 2D spectrogram. We also include the results of the
following video-to-music generation methods: CMT [4],
Video2Music [6], VidMusicGen [1] and Vid2MLDM [5].
All results are obtained using the same video input shown
at the top of the Figure.

Based on these results, we observe that symbolic mu-
sic generation methods(i.e., CMT and Video2Music) often
generate music with uniform music beat patterns, which is
suboptimal as the music fails to match the temporal dy-
namics of the video content. Furthermore, the existing
waveform methods (i.e., VidMusicGen and Vid2MLDM)
struggle to generate music consistently synchronized with
dynamic low-level video events.In comparison, the music
beats generated by our model (highlighted in red boxes)
have higher intensity when a surfer in the video performs a
dramatic turn. This demonstrates that our model generates
music that reflects the pace and magnitude of the actions
occurring in the video.
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