
Supplementary Material for
J -Invariant Volume Shuffle for Self-Supervised Cryo-Electron Tomogram

Denoising on Single Noisy Volume
S1. The Impact of 3D Pixel-Unshuffle/Shuffle on J -invariance

In the context of Blind-Spot Networks (BSN) for self-supervised image denoising, ensuring J -invariance is critical. J -
invariance means that the prediction for each pixel (or voxel in 3D a volumetric image) in the output image should not be
influenced by the corresponding pixel in the input image. This property prevents the model from learning to replicate noisy
inputs directly, thus avoiding identity mapping and ensuring effective denoising.

Generally, BSNs are composed of centrally masked convolution and dilated convolutions layers. Consider a BSN denoted
as f , composed of d-dilated convolutions f (l) for all l ∈ (1, L), with a kernel size of 3 × 3 × 3. The function f can be
expressed as:

f(x) = f (L)(f (L−1)(...f (1)(f (0)(x)))) (S1)

where f (0) denotes a centrally masked convolutional layer using a (2d− 1)× (2d− 1)× (2d− 1) kernel, and x is the input
noisy volume. The learned features for each convolutional layer l are represented as:

y(l) = f (l)(f (l−1)(...f (1)(f (0)(x)))) (S2)

Suppose xi,j,k is a voxel of a noisy volume x, where the coordinates i, j, k satisfies i mod q = 0, j mod q = 0, and
k mod q = 0. Here, q is the scale factor of 3D pixel-unshuffle. The dilated convolution will expose xi,j,k’s features to its
neighboring voxels. During 3D pixel-unshuffle, voxels y(l)m,n,o, where i ≤ m < i + q, j ≤ n < j + q, and k ≤ o < k + q,
are aligned to the channel axis of the same spatial position as y(l)i,j,k. Subsequent convolution operations would then expose

xi,j,k’s features to y
(l)
i,j,k, thus breaking the J -invariance.

S2. Conditions for Maintaining J -invariance
Maintaining J -invariance in 3D self-supervised denoising networks, particularly when using volume-unshuffle opera-

tions, requires careful consideration of the relationship between the unshuffle volume size v and the dilation factor d in
dilated convolution. Volume-unshuffle can only maintain J -invariance when the volume size v is a multiple of the dilation
factor d. This ensures that voxels with the same position as xi,j,k in each channel remain independent with xi,j,k. The
neighboring voxels of xi,j,k will be influenced after central masked convolution in the first layer, with the receptive field
RF(y(0), xi,j,k):

RF(y(0), xi,j,k) = {(i± (d− 1), j ± (d− 1), k ± (d− 1)), . . . , (i± 1, j ± 1, k ± 1)} (S3)

This means the central masked convolution creates a receptive field around the voxel xi,j,k, affecting its neighboring
voxels within a range determined by the dilation factor d. RF(y(l), xi,j,k) indicates the receptive field of xi,j,k in y(l). The
sequential, dilated convolution expand this receptive field:

RF(y(l), xi,j,k) =
⋃

n{1,2,3}∈{−d,0,d}

{(i′ + n1, j
′ + n2, k

′ + n3) | (i′, j′, k′) ∈ RF(y(l−1), xi,j,k)} (S4)

From Eq. S3, S4, we can infer that there still are voxels not influenced by xi,j,k with a period of d. When we apply
volume-unshuffle to downsample y(l), we should keep these unaffected voxels staying at the same spatial position as xi,j,k

in each channel. To facilitate clarity, we only focus on one spatial axis location as follow.

Volume-Unshuffle(y(l)i , v) = v
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+ (i mod v) (S5)

The voxels xi∗,j∗,k∗ that have same spatial position with xi,j,k will satisfy:
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Judging from Eq. S7, the left side is a multiple of v, while the right side is the remainder when divided by v, which means
that it must be smaller than v. For the equation to hold, both sides must be 0, meaning the positional difference between i∗

and i must equal a multiple of v from i. Therefore, the independence on xi,j,k along the channel axis can be guaranteed with
the unshuffle volume size v equals to the dilation factor d.

S3. Sources of Real Datasets
• The first dataset G. hansenii bio9-2 can be downloaded from CryoET Data Portal (https://cryoetdataportal.
czscience.com/). The G. hansenii bio9-2 dataset is a tilt series of 61 projections ranging from −60◦ to +60◦ at 2◦

intervals. Each tilt image measures 960× 928 pixels with 5.41 Å/pixel, acquired using a TFS Krios microscope with a
Gatan K3 camera.

• The second dataset Vesicle is provided by the Institute of Biophysics, Chinese Academy of Sciences. The Vesicle dataset
consists of 120 projections ranging from −59◦ to +60◦ at 1◦ intervals. Each tilt image measures 1024 × 1024 pixels
with 8 Å/pixel, acquired using a TFS Talos Arctica microscope with a Falcon II camera.

• The third dataset Escherichia phage T4 is downloaded from EMDB (https://www.ebi.ac.uk/emdb/). The
Escherichia phage T4 dataset contains 41 projections ranging from −60◦ to +60◦ at 3◦ intervals. Each tilt image
measures 1024 × 1024 pixels with 1.558 Å/pixel, acquired using a FEI Tecnai F20 microscope with a Dectris Arina
4D-STEM detector.

• The fourth dataset Centriole can be downloaded from the IMOD tutorial (http://bio3d.colorado.edu/imod/
files/tutorialData-1K.tar.gz).he Centriole dataset is a tilt series of 64 projections ranging from −61.0◦ to
+65.0◦ at 2◦ at intervals. Each tilt image measures 1024 × 1024 pixels with 10.1 Å/pixel, acquired using an FEI TF39
microscope with a Gatan camera.

S4. Preparation of Simulated Dataset
As shown in Figure S1, the workflow for preparing a simulated Cryo-ET dataset involves introducing Additive White

Gaussian Noise (AWGN) to noise-free projections, followed by the reconstruction of the resulting noisy data.

Add Noise

Reconstruction

Reconstruction

Noise-free Projections

Noisy Projections

Ground Truth

Noisy Input

Figure S1: The workflow to prepare a simulated dataset with AWGN adding to noise-free projections.

Noise-free projections represent the ideal, high-quality data without any interference from noise. These noise-free pro-
jections undergo a reconstruction process to generate a 3D volume, referred to as the ”Ground Truth”. To simulate realistic
imaging conditions, AWGN is introduced into the noise-free projections. This step replicates the inherent noise encountered
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in actual Cryo-ET data acquisition, arising from sources such as electronic noise, environmental fluctuations, and the limi-
tations of the imaging apparatus. Subsequently, these noisy projections are reconstructed to generate 3D volumetric images
termed ”Noisy Input”. Figure S2 visualizes the reconstructed examples with noise intensity of σ = 0.2.

SHREC20 18.12/0.377 SHREC21 18.34/0.142 Polnet 21.17/0.344

Figure S2: Examples of the noisy reconstructed volumetric data (metrics: PSNR (dB)/SSIM), in which the volumes are
reconstructed from projections with AWGN (σ=0.2).

S5. Experiment Evaluation Metrics
S5.1. Simulated Dataset Experiments

In our simulated experiment, we utilize PSNR and SSIM as the primary metrics for evaluation. The mathematical formu-
lations for PSNR and SSIM are provided in Eq. S8 and Eq. S9, respectively.

PSNR(Ṽ , V g) = 20 log10

(
MAXI

MSE

)
(S8)

SSIM(Ṽ , V g) =
(2µṼ µV g + C1)(2σṼ V g + C2)

(µ2
Ṽ
+ µ2

V g + C1)(σ2
Ṽ
+ σ2

V g + C2)
(S9)

In the equations above, Ṽ denotes the denoised output image, while V g represents the ground truth image. For our
experiments, the pixel values of each image are normalized to the range [0, 1]. Consequently, the parameter MAXI in Eq. S8
is set to 1. For Eq. S9, we use the constants C1 = (K1 · L)2 and C2 = (K2 · L)2, where K1 = 0.01 and K2 = 0.03. L
represents the dynamic range of pixel values, which is set to 1 in our experiments due to normalization.

S5.2. Real Data Experiments

For real-world dataset without ground truth, we adopt a cross-validation metric called FSCe/o to assess the resolution
of cryo-ET volumes. The Fourier shell correlation (FSC) between two tomographic volumes calculated from even and odd
projections is defined as FSCe/o. The mathematical formulation of FSC is

FSC(r) =

∑
ri∈r F1(ri) · F2(ri)

∗√∑
ri∈r |F1(ri)|2

∑
ri∈r |F2(ri)|2

(S10)

where F1 is complex factor for volume 1, F ∗
2 conjugate of the structure factor for volume 2, and ri is an individual voxel

element at radius r. Assuming that the SNR in each tomographic volume from a half reconstruction has half signals of that
in complete reconstruction, FSCe/o is calculated as:

FSCe/o(r) =
2FSC(r)

FSC(r) + 1
(S11)

3



S6. Edge Representation Enhancer.
Designed around the Kirsch operator, this edge representation enhancer excels in extracting detailed edge and contour

information by leveraging multi-directional edge detection. The Kirsch operator takes a single kernel mask and rotates it
in 45-degree increments through all 8 compass directions: North (N), Northwest (NW), West (W), Southwest (SW), South
(S), Southeast (SE), East (E), and Northeast (NE). The edge magnitude of the Kirsch operator is calculated as the maximum
magnitude across all directions:

hx,y,z = max
n=1,...,8

1∑
i=−1

1∑
j=−1

1∑
k=−1

g
(n)
ijk · fx+i,y+j,z+k (S12)

where hx,y,z is the edge magnitude at position (x, y, z), g(n)ijk represents the Kirsch kernel for direction n, and fx+i,y+j,z+k

is the voxel value at position (x+ i, y + j, z + k) in the 3D image.
The final edge intensity map D(x, y, z) is obtained by applying thresholding operation, setting all pixels below a certain

threshold T to 0. This effectively suppresses random edges caused.

D(x, y, z) =

{
hx,y,z if hx,y,z ≥ T

0 if hx,y,z < T
(S13)

We conducted experiments to assess the impact of the edge representation enhancer in our denoising framework by comparing
the Kirsch operator with the Sobel operator. Figure S3 reveals that the Kirsch operator excels at preserving edge details and
demonstrates greater robustness against noise. Quantitative results in Table S1 corroborate these findings, with the Kirsch
operator consistently delivering higher PSNR and SSIM values than the Sobel operator. This underscores the effectiveness of
the Kirsch operator in capturing and enhancing edge information, thereby significantly improving the quality of the denoised
volumetric images.

Table S1: PSNR/SSIM results for ablation study on Kirsch and sobel operator.(AWGN:σ=0.15).

Dataset Noisy Sobel Kirsch

SHREC20 20.63/0.440 35.54/0.941 36.18/0.952
PolNet 23.67/0.448 36.92/0.934 37.06/0.953

Noisy Kirsch Sobel Ground Truth
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Figure S3: Visual results of study on edge representation enhancer.
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S7. Visual Result of the Experiment on Simulated Data
To comprehensively analyze the results of experiments on simulated data, we provide additional visual results for each

method. Figure S4 shows the visual comparison of the denoised tomogram, where the displayed images are selected from the
middle slice of the tomograms along the direction of x-, y- and z-axis. Judging from Figure S4, our method shows superior
performance in preserving structural details and reducing noise, with the tomogram exhibiting fewer artifacts compared to
those processed by other methods.

BM4D 29.73/0.877 N2V 17.55/0.363 SC-Net 28.44/0.878 NMSG 34.91/0.915 Ours 35.79/0.936 Ground Truth

BM4D 31.81/0.736 N2V 18.29/0.143 SC-Net 29.78/0.704 NMSG 35.17/0.766 Ours 37.64/0.784 Ground Truth

BM4D 31.54/0.814 N2V 21.21/0.341 SC-Net 27.62/0.852 NMSG 34.07/0.893 Ours 36.51/0.932 Ground Truth
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Figure S4: Visual results of the simulated data with AWGN (σ = 0.2) shown in 3D space (metrics: PSNR(dB)/SSIM).
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