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S1. Baselines.

We first compare with a registration baseline that is not learning-based—we use the transforms to propagate labels from

the labeled training cases to the test images, similar to [1, 4, 9], selecting labeled cases with our BRS. We also compare a

joint registration and segmentation model, DeepAtlas [18]; this learns registration from scratch simultaneously with segmen-

tation. To stay consistent with our CCT-R, we reimplemented it using a 2D U-Net segmentation model. We evaluate several

recent S4 methods with the U-Net [15] backbone: Mean Teacher (MT) [16], Deep Co-Training (DCT) [14], Uncertainty

Aware Mean Teacher (UAMT) [19], Interpolation Consistency Training (ICT) [17], Cross Consistency Training (CCT) [13],

Cross Pseudo Supervision (CPS) [3], and Cross Teaching Supervision (CTS) [11], which like CCT-R uses Swin-UNet [2]

(Transformer) and U-Net backbones. In addition, we include the SOTA S4 method with contrastive learning, MCSC [7]. As

a reference we also train the U-Net backbone from the S4 methods on only the labeled subset of cases (LS) without addi-

tional tricks. We also include fully-supervised methods—the same U-Net trained under full supervision (FS), and the SOTA

fully-supervised methods BATFormer [6] (on ACDC) and nnFormer [20] (on Synapse). We retrain all baseline models using

their recommended hyperparameters, and report the results from [11] or our replication, whichever is better.

S2. Implementation Details

For all methods we use random cropping, random flipping and rotations to augment. All methods were trained until

convergence, or up to 40,000 iterations. We precomputed a composite pairwise registration (affine for ACDC and affine +

B-spline deformable transformation for Synapse) for all training data prior to training, using ITK [10,12]. The compute time

required for each affine registration is approximately 2 minutes per pair, while each deformable pair takes around 3 hours

based on 50 CPUs. Consequently, the computational overhead for affine transformations on the ACDC and Synapse datasets

is roughly 161 and 10 hours, respectively. For Synapse, the deformable transformations require approximately 918 hours.

However, by parallelizing up to 5 registration tasks, we can reduce the effective time to 1/5, maximizing CPU utilization.

Additionally, if computational resources are limited, using only affine transformations offers a cost-effective alternative. We

used the AdamW optimizer with a weight decay of 5 × 10−4. The learning rate followed a polynomial schedule, starting at

5×10−4 for the U-Net and 1×10−4 for the Swin-Unet. Our training batches consisted of 8 images for ACDC and 24 images

for Synapse, evenly split between labeled and unlabeled. In the contrastive learning section, each (H∗) was composed of two

linear layers, outputting 256 and 128 channels, respectively. In Eq. 6, wcps is defined by a Gaussian warm-up function [11]:

wcps(i) = 0.1 · exp
(

−5(1− i/ttotal)
2
)

, where i is the index of the current training iteration and ttotal is the total number

of iterations, while wcl is set to a constant value of 10−3. In Eq. 4, temperature τ = 0.1. In REPS module, the bank size

K = (M +K)/5. We implemented our method in PyTorch. All experiments were run on one RTX 3090 GPU.

S3. Full results on ACDC and Synapse

Here we show extended versions of Table 1 and 2 in the main paper as Table S1 and Table S2. In these extended tables, we

provide additional comparisons by separately evaluating the performance of the two branches (CNN and Transformer) of our

CCT-R (whereas in the main paper we use the mean of their logits); we also give results for all baselines under three different
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Table S1. Segmentation results on ACDC for our method CCT-R and baselines, according to DSC(%) and HD(mm) for organs.

Labeled Methods
Mean Myo LV RV

DSC↑ HD↓ DSC↑ HD↓ DSC↑ HD↓ DSC↑ HD↓

70 (100%)
UNet-FS 91.7 4.0 89.0 5.0 94.6 5.9 91.4 1.2

BATFormer [6] 92.8 8.0 90.26 6.8 96.3 5.9 91.97 11.3

7 (10%)

Reg. only (Aff) 30.7 16.4 19.7 13.9 42.0 14.4 30.5 20.8

DeepAtlas [18] 79.4 8.0 79.0 11.7 81.9 3.2 77.3 9.0

UNet-LS 75.9 10.8 78.2 8.6 85.5 13.0 63.9 10.7

MT [16] 80.9 11.5 79.1 7.7 86.1 13.4 77.6 13.3

DCT [14] 80.4 13.8 79.3 10.7 87.0 15.5 75.0 15.3

UAMT [19] 81.1 11.2 80.1 13.7 87.1 18.1 77.6 14.7

ICT [17] 82.4 7.2 81.5 7.8 87.6 10.6 78.2 3.2

CCT [13] 84.0 6.6 82.3 5.4 88.6 9.4 81.0 5.1

CPS [3] 85.0 6.6 82.9 6.6 88.0 10.8 84.2 2.3

CTS [11] 86.4 8.6 84.4 6.9 90.1 11.2 84.8 7.8

MCSC [7] 89.4 2.3 87.6 1.1 93.6 3.5 87.1 2.1

Ours (CNN, Affine) 89.5 1.8 87.2 2.0 92.9 1.8 88.4 1.7

Ours (Trans, Affine) 89.1 1.8 85.7 1.2 91.7 2.8 89.9 1.3

Ours (mean, Affine) 90.3 1.6 87.4 1.4 92.7 2.2 90.9 1.3

3 (5%)

Reg. only (Aff) 32.0 17.8 18.0 15.7 43.9 16.0 34.0 21.7

DeepAtlas [18] 59.0 8.6 62.8 5.4 67.8 7.7 46.4 12.6

UNet-LS 51.2 31.2 54.8 24.4 61.8 24.3 37.0 44.4

MT [16] 56.6 34.5 58.6 23.1 70.9 26.3 40.3 53.9

DCT [14] 58.2 26.4 61.7 20.3 71.7 27.3 41.3 31.7

UAMT [19] 61.0 25.8 61.5 19.3 70.7 22.6 50.8 35.4

ICT [17] 58.1 22.8 62.0 20.4 67.3 24.1 44.8 23.8

CCT [13] 58.6 27.9 64.7 22.4 70.4 27.1 40.8 34.2

CPS [3] 60.3 25.5 65.2 18.3 72.0 22.2 43.8 35.8

CTS [11] 65.6 16.2 62.8 11.5 76.3 15.7 57.7 21.4

MCSC [7] 73.6 10.5 70.0 8.8 79.2 14.9 71.7 7.8

Ours (CNN, Affine) 85.2 1.9 83.3 1.5 89.9 2.9 82.4 2.2

Ours (Trans, Affine) 85.4 2.6 83.2 1.8 89.3 3.8 83.5 2.1

Ours (mean, Affine) 85.7 2.0 83.8 1.4 89.9 2.4 83.5 2.1

1 (1.4%)

Reg. only (Aff) 23.4 19.7 13.6 18.7 31.6 19.0 25.1 21.4

DeepAtlas [18] 40.4 18.5 42.2 11.7 34.7 29.2 44.4 14.6

UNet-LS 26.4 60.1 26.3 51.2 28.3 52.0 24.6 77.0

CTS [11] 46.8 36.3 55.1 5.5 64.8 4.1 20.5 99.4

MCSC [7] 58.6 31.2 64.2 13.3 78.1 12.2 33.5 68.1

Ours (CNN, Affine) 79.6 5.2 77.6 5.3 83.2 5.1 78.0 5.1

Ours (Trans, Affine) 80.0 4.2 77.7 4.0 83.0 4.2 79.4 3.6

Ours (mean, Affine) 80.4 3.5 78.3 3.2 83.6 4.3 79.3 2.9

Best is bold, Second Best is underlined.

settings on both datasets. It can be seen that on the ACDC dataset, the performance of CCT-R’s CNN and Transformer

branches is quite similar. However, on the more challenging Synapse dataset, the Transformer outperforms the CNN, likely

due to its superior ability to capture long-range dependencies, which allows it to better handle the relationships between large

and small organs.



Table S2. Segmentation results on Synapse for our method CCT-R and baselines, according to DSC(%) and HD(mm).

Labeled Methods DSC↑ HD↓ Aorta Gallb Kid L Kid R Liver Pancr Spleen Stom

18(100%)
UNet-FS 75.6 42.3 88.8 56.1 78.9 72.6 91.9 55.8 85.8 74.7

nnFormer 86.6 10.6 92.0 70.2 86.6 86.3 96.8 83.4 90.5 86.8

4(20%)

Reg. only (Affine) 27.0 39.6 16.0 7.5 36.4 33.0 56.8 13.1 28.5 25.1

Reg. only (Aff+Def) 32.5 36.5 29.7 4.8 36.5 29.4 65.5 14.2 48.0 31.7

DeepAtlas [18] 56.1 85.3 69.2 43.3 50.8 55.2 88.8 30.5 62.7 48.0

UNet-LS 47.2 122.3 67.6 29.7 47.2 50.7 79.1 25.2 56.8 21.5

UAMT [19] 51.9 69.3 75.3 33.4 55.3 40.8 82.6 27.5 55.9 44.7

ICT [17] 57.5 79.3 74.2 36.6 58.3 51.7 86.7 34.7 66.2 51.6

CCT [13] 51.4 102.9 71.8 31.2 52.0 50.1 83.0 32.5 65.5 25.2

CPS [3] 57.9 62.6 75.6 41.4 60.1 53.0 88.2 26.2 69.6 48.9

CTS [11] 64.0 56.4 79.9 38.9 66.3 63.5 86.1 41.9 75.3 60.4

MCSC [7] 68.5 24.8 76.3 44.4 73.4 72.3 91.8 46.9 79.9 62.9

Ours (CNN, Affine) 67.3 37.9 79.0 36.5 72.7 70.4 87.9 47.3 77.8 67.0

Ours (Trans, Affine) 70.5 22.7 81.0 34.1 71.1 71.9 93.2 49.9 87.9 75.2

Ours (mean, Affine) 70.0 23.2 79.8 34.5 71.0 70.7 92.8 49.6 87.4 74.4

Ours (CNN, Affine+Deform) 69.5 36.2 80.0 49.2 73.0 69.9 89.3 48.5 79.5 66.7

Ours (Trans, Affine+Deform) 72.5 20.5 80.9 43.4 75.6 75.1 93.5 51.3 87.4 72.2

Ours (mean, Affine+Deform) 71.4 21.1 80.4 42.3 73.0 70.0 93.7 49.4 87.9 74.2

2(10%)

Reg. only (Affine) 25.4 36.8 17.5 3.5 32.7 27.5 53.4 12.6 33.4 22.5

Reg. only (Aff+Def) 29.1 44.0 27.2 11.3 28.6 26.5 66.4 12.7 29.7 30.3

DeepAtlas [18] 44.0 67.1 68.0 24.9 37.9 46.0 82.7 18.4 44.2 30.6

UNet-LS 45.2 55.6 66.4 27.2 46.0 48.0 82.6 18.2 39.9 33.4

UAMT [19] 49.5 62.6 71.3 21.1 62.6 51.4 79.3 22.8 58.2 29.0

ICT [17] 49.0 59.9 68.9 19.9 52.5 52.2 83.7 25.4 53.2 36.0

CCT [13] 46.9 58.2 66.0 26.6 53.4 41.0 82.9 21.2 48.7 35.6

CPS [3] 48.8 65.6 70.9 21.3 58.0 45.1 80.7 23.5 58.0 32.7

CTS [11] 55.2 45.4 71.5 25.6 62.6 67.5 78.2 26.3 75.9 34.3

MCSC [7] 61.1 32.6 73.9 26.4 69.9 72.7 90.0 33.2 79.4 43.0

Ours (CNN, Affine) 60.4 37.1 77.0 27.8 70.8 69.0 88.4 35.4 67.0 47.7

Ours (Trans, Affine) 64.2 22.1 77.4 22.1 75.0 74.2 92.2 39.6 78.2 54.8

Ours (mean, Affine) 65.1 22.5 75.7 28.4 74.5 75.0 91.8 38.0 82.3 55.1

Ours (CNN, Affine+Deform) 62.6 44.3 76.5 37.7 73.0 68.0 87.0 32.3 76.5 49.9

Ours (Trans, Affine+Deform) 68.3 23.1 74.8 49.1 75.2 74.7 92.8 39.7 84.1 56.2

Ours (mean, Affine+Deform) 66.5 19.7 77.6 34.4 75.1 74.2 92.6 39.5 82.1 56.1

1(5%)

Reg. only (Affine) 26.4 45.0 16.3 6.6 35.8 32.8 53.5 14.4 28.7 22.7

Reg. only (Aff+Def) 27.4 52.2 26.4 11.3 30.5 27.1 61.6 12.8 26.3 23.6

DeepAtlas [18] 16.1 72.3 18.4 14.9 1.2 10.1 57.1 0.6 14.4 12.2

UNet-LS 13.7 116.5 11.6 17.8 0.8 1.8 56.9 0.1 8.7 11.6

UAMT [19] 10.7 90.2 8.0 9.3 0.3 8.1 31.7 1.1 13.1 14.3

ICT [17] 15.9 82.3 13.8 11.9 0.3 2.7 70.5 0.8 16.4 10.6

CCT [13] 11.7 107.5 10.0 13.0 0.1 1.9 47.5 3.7 8.0 9.3

CPS [3] 15.0 123.5 19.6 9.6 5.6 6.9 59.4 2.3 9.4 7.2

CTS [11] 26.3 96.5 44.6 4.0 11.2 5.5 60.3 9.6 54.1 21.2

MCSC [7] 34.0 53.8 50.9 13.0 17.6 54.6 64.3 5.5 43.1 23.5

Ours (CNN, Affine) 39.5 66.5 61.7 17.0 9.2 65.2 71.1 12.3 54.3 25.3

Ours (Trans, Affine) 43.2 67.5 58.5 12.5 20.2 66.6 78.9 10.3 72.9 26.5

Ours (mean, Affine) 43.4 40.8 62.5 13.3 17.9 71.0 77.0 11.4 65.4 28.7

Ours (CNN, Affine+Deform) 44.2 54.2 63.8 10.8 48.7 61.6 74.6 5.4 61.8 26.6

Ours (Trans, Affine+Deform) 45.3 46.9 62.9 9.9 56.5 65.6 70.9 0.1 72.8 24.2

Ours (mean, Affine+Deform) 47.6 38.4 65.5 9.3 61.6 70.2 72.7 0.1 73.9 27.8

Best is bold, Second Best is underlined.
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Table S3. Comparisons with SoTA contrastive learning methods combined with CTS, on ACDC and Synapse.

Contrastive learning method
ACDC 3 (5 %) / 1 (1.4 %) Synapse 4 (20 %) / 2 (10%)

DSC↑ HD↓ DSC↑ HD↓ DSC↑ HD↓ DSC↑ HD↓

Patch-level
GLCL [5] (MICCAI’21) 71.7 3.8 47.4 35.8 67.7 42.6 59.7 34.6

MCSC [7] (BMVC’23) 73.6 10.5 58.6 31.2 68.5 24.8 61.1 32.6

Slice-level
ReCo [8] (ICLR’22) 70.2 6.1 48.3 33.5 68.3 25.9 60.4 20.7

Ours 85.4 2.6 80.0 4.2 71.4 21.1 66.5 19.7

None (Vanilla CTS [11]) 65.6 16.2 46.8 36.3 64.0 56.4 57.2 45.7

Best is bold.

S4. Comparison with Alternative Supervised Contrastive Learning Losses

In Table S3, we compare our proposed approach with the state-of-the-art contrastive S4 method MCSC [7], and with

incorporating other recent patch-level and slice-level contrastive learning techniques (GLCL [5] and ReCo [8]) into CTS.

While all the contrastive losses improve on vanilla CTS, our CCT-R achieves higher segmentation accuracy on nearly all

datasets and labelling rates.
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