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S1. Baselines.

We first compare with a registration baseline that is not learning-based—we use the transforms to propagate labels from
the labeled training cases to the test images, similar to [1,4, 9], selecting labeled cases with our BRS. We also compare a
joint registration and segmentation model, DeepAtlas [18]; this learns registration from scratch simultaneously with segmen-
tation. To stay consistent with our CCT-R, we reimplemented it using a 2D U-Net segmentation model. We evaluate several
recent S4 methods with the U-Net [15] backbone: Mean Teacher (MT) [16], Deep Co-Training (DCT) [14], Uncertainty
Aware Mean Teacher (UAMT) [19], Interpolation Consistency Training (ICT) [17], Cross Consistency Training (CCT) [13],
Cross Pseudo Supervision (CPS) [3], and Cross Teaching Supervision (CTS) [1 1], which like CCT-R uses Swin-UNet [2]
(Transformer) and U-Net backbones. In addition, we include the SOTA S4 method with contrastive learning, MCSC [7]. As
a reference we also train the U-Net backbone from the S4 methods on only the labeled subset of cases (LS) without addi-
tional tricks. We also include fully-supervised methods—the same U-Net trained under full supervision (FS), and the SOTA
fully-supervised methods BATFormer [6] (on ACDC) and nnFormer [20] (on Synapse). We retrain all baseline models using
their recommended hyperparameters, and report the results from [1 1] or our replication, whichever is better.

S2. Implementation Details

For all methods we use random cropping, random flipping and rotations to augment. All methods were trained until
convergence, or up to 40,000 iterations. We precomputed a composite pairwise registration (affine for ACDC and affine +
B-spline deformable transformation for Synapse) for all training data prior to training, using ITK [10, 12]. The compute time
required for each affine registration is approximately 2 minutes per pair, while each deformable pair takes around 3 hours
based on 50 CPUs. Consequently, the computational overhead for affine transformations on the ACDC and Synapse datasets
is roughly 161 and 10 hours, respectively. For Synapse, the deformable transformations require approximately 918 hours.
However, by parallelizing up to 5 registration tasks, we can reduce the effective time to 1/5, maximizing CPU utilization.
Additionally, if computational resources are limited, using only affine transformations offers a cost-effective alternative. We
used the AdamW optimizer with a weight decay of 5 x 10~%. The learning rate followed a polynomial schedule, starting at
5 x 10~ for the U-Net and 1 x 10~ for the Swin-Unet. Our training batches consisted of 8 images for ACDC and 24 images
for Synapse, evenly split between labeled and unlabeled. In the contrastive learning section, each (f1..) was composed of two
linear layers, outputting 256 and 128 channels, respectively. In Eq. 6, wcs is defined by a Gaussian warm-up function [11]:
Weps (1) = 0.1 - exp (—5(1 —i/ ttotal)2), where 1 is the index of the current training iteration and tyoa; is the total number
of iterations, while w,; is set to a constant value of 1073, In Eq. 4, temperature 7 = 0.1. In REPS module, the bank size
K = (M + K)/5. We implemented our method in PyTorch. All experiments were run on one RTX 3090 GPU.

S3. Full results on ACDC and Synapse

Here we show extended versions of Table 1 and 2 in the main paper as Table S1 and Table S2. In these extended tables, we
provide additional comparisons by separately evaluating the performance of the two branches (CNN and Transformer) of our
CCT-R (whereas in the main paper we use the mean of their logits); we also give results for all baselines under three different



Table S1. Segmentation results on ACDC for our method CCT-R and baselines, according to DSC(%) and HD(mm) for organs.

Labeled  Methods Mean Myo Lv RV
DSCt HDJ DSCt HDJ DSCt HD| DSCt HDJ
UNet-FS 917 40 890 50 946 59 914 12
70 (100%) g ATFommer [0] 928 80 9026 68 963 59 9197 113
Reg. only (Aff) 307 164 197 139 420 144 305 208
DeepAtlas [1] 794 80 790 117 819 32 773 9.0
UNet-LS 759 108 782 86 855 13.0 639 107
MT [16] 80.9 115 79.1 7.7 861 134 77.6 133
DCT [14] 80.4 138 793 107 870 155 750 153
UAMT [19] 81.1 112 80.1 137 87.1 181 77.6 147
700%) et 824 72 815 78 876 106 782 32
CCT [13] 840 66 823 54 886 94 810 5.1
CPS [3] 850 66 829 66 880 108 842 23
CTS[11] 864 86 844 69 90.1 112 848 7.8
MCSC [7] 894 23 876 11 93.6 35 871 21

Ours (CNN, Affine) 89.5 1.8 872 20 929 18 884 L7
Ours (Trans, Affine) 89.1 1.8 857 1.2 917 28 89.9 1.3

Ours (mean, Affine) 903 1.6 874 14 927 22 909 13

Reg. only (Aff) 320 178 180 157 439 160 340 217
DeepAtlas [ 1] 500 86 628 54 678 77 464 126
UNet-LS 512 312 548 244 618 243 370 444
MT [16] 566 345 586 231 709 263 403 539
DCT [14] 582 264 617 203 717 273 413 317
UAMT [19] 61.0 258 615 193 707 226 50.8 354

3G6%  reri 581 228 620 204 673 241 448 238
CCT[13] 586 279 647 224 704 27.1 408 342
CPS [3] 603 255 652 183 720 222 438 358
CTS [11] 656 162 628 115 763 157 577 214
MCSC [7] 736 105 700 88 792 149 717 7.8

Ours (CNN, Affine) 852 19 833 15 899 29 824 22

Ours (Trans, Affine) 854 26 832 1.8 893 38 835 21
Ours (mean, Affine) 857 2.0 838 14 899 24 835 21

Reg. only (Aff) 234 197 136 187 316 190 251 214
DeepAtlas [ 18] 404 185 422 117 347 292 444 146
UNet-LS 264 60.1 263 512 283 520 246 770
1(L4%)  c1s111] 468 363 551 55 648 41 205 994
MCSC [7] 586 312 642 133 781 122 335 68.1

Ours (CNN, Affine) 796 52 776 53 832 51 780 5.1
Ours (Trans, Affine) 80.0 42 777 4.0 83.0 42 794 3.6

Ours (mean, Affine) 804 35 783 32 836 43 793 29

Best is bold, Second Best is underlined.

settings on both datasets. It can be seen that on the ACDC dataset, the performance of CCT-R’s CNN and Transformer
branches is quite similar. However, on the more challenging Synapse dataset, the Transformer outperforms the CNN, likely
due to its superior ability to capture long-range dependencies, which allows it to better handle the relationships between large
and small organs.



Table S2. Segmentation results on Synapse for our method CCT-R and baselines, according to DSC(%) and HD(mm).

Labeled Methods DSCT HDJ Aorta Gallb Kid L Kid_R Liver Pancr Spleen Stom
18(100%) UNet-FS 756 423 888 56.1 789 72.6 919 558 858 747
o nnFormer 86.6 10.6 920 702 866 863 968 834 905 86.8

Reg. only (Affine) 270 396 160 7.5 364 330 568 13.1 285 25.1

Reg. only (Aff+Def) 325 365 297 48 365 294 655 142 480 317
DeepAtlas [ 18] 56.1 853 692 433 508 552 888 305 627 480

UNet-LS 472 1223 67.6 297 472 507 79.1 252 568 21.5

UAMT [19] 519 693 753 334 553 408 82.6 275 559 447

ICT [17] 575 793 742 366 583 517 867 347 662 516

CCT[13] 514 1029 718 312 520 50. 83.0 325 655 252

4(20%) CPS [3] 579 626 756 414 60.1 530 882 262 69.6 489
CTS[11] 640 564 799 389 663 63.5 86.1 419 753 60.4

MCSC [7] 685 248 763 444 734 723 918 469 799 62.9

Ours (CNN, Affine) 67.3 379 79.0 365 727 1704 879 473 778 67.0
Ours (Trans, Affine) 70.5 227 81.0 34.1 71.1 719 932 499 879 752
Ours (mean, Affine) 70.0 232 79.8 345 710 70.7 928 49.6 874 744
Ours (CNN, Affine+Deform) 69.5 36.2 80.0 49.2 73.0 69.9 893 485 79.5 66.7
Ours (Trans, Affine+Deform) 72.5 20.5 809 434 75.6 751 935 513 874 722
Ours (mean, Affine+Deform) 71.4 21.1 804 423 73.0 70.0 93.7 494 879 742

Reg. only (Affine) 254 368 175 35 327 275 534 126 334 225

Reg. only (Aff+Def)y  29.1 440 272 113 286 265 664 127 297 303
DeepAtlas [ 18] 440 67.1 680 249 379 460 827 184 442 30.6

UNet-LS 452 556 664 272 460 480 826 182 399 334

UAMT [19] 495 626 713 211 626 514 793 228 582 29.0

ICT[17] 490 599 689 199 525 522 837 254 532 36.0

CCT [13] 469 582 660 266 534 410 829 212 487 356

2(10%) CPS [3] 488 656 709 213 580 45.1 807 235 580 327
CTS [11] 552 454 715 256 626 61.5 782 263 759 343

MCSC [7] 61.1 326 739 264 699 727 900 332 794 43.0

Ours (CNN, Affine) 604 37.1 77.0 27.8 70.8 69.0 88.4 354 67.0 477
Ours (Trans, Affine) 642 22.1 774 221 750 742 922 396 782 548
Ours (mean, Affine) 65.1 225 757 284 745 750 91.8 38.0 823 55.1
Ours (CNN, Affine+Deform) 62.6 443 76.5 37.7 73.0 68.0 87.0 323 765 499
Ours (Trans, Affine+Deform) 68.3 23.1 74.8 49.1 752 747 928 39.7 84.1 56.2
Ours (mean, Affine+Deform) 66.5 19.7 77.6 344 75.1 742 92.6 395 821 56.1

Reg. only (Affine) 2.4 450 163 66 358 328 535 144 287 227
Reg. only (Aff+Def)  27.4 522 264 113 30.5 27.1 61.6 128 263 23.6
DeepAtlas [ 18] 161 723 184 149 12 101 571 06 144 122

UNet-LS 137 1165 116 17.8 08 18 569 0.1 87 116

UAMT [19] 107 902 80 93 03 81 317 11 131 143

ICT[17] 159 823 138 119 03 27 705 08 164 106

CCT[13] 117 1075 100 130 01 19 475 37 80 93

165%) CPS [3] 150 1235 196 96 56 69 594 23 94 72
CTS[11] 263 965 446 40 112 55 603 96 541 212

MCSC [7] 340 538 509 130 17.6 546 643 55 431 235

Ours (CNN, Affine) 39.5 66.5 61.7 170 92 652 71.1 123 543 253
Ours (Trans, Affine) 432 675 585 125 202 66.6 789 103 729 265
Ours (mean, Affine) 434 408 62.5 133 179 71.0 77.0 114 654 28.7
Ours (CNN, Affine+Deform) 44.2 542 63.8 10.8 487 61.6 746 54 61.8 26.6
Ours (Trans, Affine+Deform) 45.3 469 629 99 565 656 709 0.1 728 242
Ours (mean, Affine+Deform) 47.6 384 655 93 61.6 702 727 0.1 739 278

Best is bold, Second Best is underlined.
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Table S3. Comparisons with SoTA contrastive learning methods combined with CTS, on ACDC and Synapse.

ACDC 3 (5 %) /1 (1.4 %) Synapse 4 (20 %) /2 (10%)

Contrastive learning method

DSCt HDJ, DSCtHD|/DSCt HDJ DSC}HD)

Patchlove] OLCL [3] (MICCAT21) 717 3.8 47.4 358 67.7 426  59.7 346
MCSC [7] BMVC'23) 73.6 105 586 312 685 248  61.1 32.6
Slicotove] RECO [STACLR22) 702 6.1 483 335 683 259 604 20.7
1V Ours 854 2.6 800 42 714 211 665 19.7
None (Vanilla CTS [11]) 65.6 162 468 363 640 564 572 457
Best is bold.

S4. Comparison with Alternative Supervised Contrastive Learning Losses

In Table S3, we compare our proposed approach with the state-of-the-art contrastive S4 method MCSC [7], and with
incorporating other recent patch-level and slice-level contrastive learning techniques (GLCL [5] and ReCo [8]) into CTS.
While all the contrastive losses improve on vanilla CTS, our CCT-R achieves higher segmentation accuracy on nearly all

datasets and labelling rates.
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