
TreeFormer: Single-view Plant Skeleton Estimation
via Tree-constrained Graph Generation

Supplementary Material

Xinpeng Liu1 Hiroaki Santo1 Yosuke Toda2,3 Fumio Okura1
1Osaka University 2Phytometrics 3Nagoya University

{liu.xinpeng,santo.hiroaki,okura}@ist.osaka-u.ac.jp yosuke@phytometrics.jp

This supplementary material provides additional infor-
mation, including details of our SFS layer (Sec. A), dataset
details (Sec. B), implementation details of the baseline
methods (Sec. C), performance analysis of our method
(Sec. D), other design choices (Sec. E), and more visual re-
sults (Sec. F).

A. Details of SFS layer

A.1. Motivation

Our method infers a tree graph via MST as formulated
in Eq. (1)–Eq. (4) in the main paper. Our task’s goal is
to optimize the graph generation network so that the final
output (i.e., tree graph via MST) becomes similar to the
ground-truth tree graph. Since MST modifies the edge
availability in unconstrained inferences, the unconstrained
methods evaluating the unconstrained graph edges are in-
direct. Instead, our method directly evaluates the quality
of the final output tree by mimicking MST. While experi-
ments highlight our method’s benefit, the following theoret-
ical analysis also supports this intuition.

A.2. Derivation

This section details the derivation of Eq. (10) in the main
paper. To make this material self-contained, we repeat sev-
eral descriptions in the main paper.

As discussed in the main paper, we consider the edge
probabilities ŷ(i,j) = [ŷ+(i,j), ŷ

−
(i,j)]

⊤ is usually computed
through the softmax activation σ applied to the output fea-
ture vector of the final layer f̂(i,j) = [f̂+

(i,j), f̂
−
(i,j)]

⊤ as

ŷ(i,j) = σ(f̂(i,j))

=

[
exp(f̂+

(i,j)
)

exp(f̂+
(i,j)

)+exp(f̂−
(i,j)

)
,

exp(f̂−
(i,j)

)

exp(f̂+
(i,j)

)+exp(f̂−
(i,j)

)

]⊤

.
(S1)

The set of unconstrained graph edges Ê are then ob-

tained by comparing the edge existence probabilities as

Ê = {(i, j) | ŷ+(i,j) > ŷ−(i,j)}, (S2)

in which Ê records node pairs where the edge exists.
Suppose the projection function P converts the set of

unconstrained edge probabilities {ŷ(i,j)} to a set of con-
strained edges E. Let the difference of two sets be E+ =
E − Ê and E− = Ê −E, denoting the sets of edges newly
added and removed by the projection. To mimic the dis-
crete (and non-differentiable) inferences by P in the differ-
entiable end-to-end learning, we modify the edge features
corresponding to E+ ∪ E− in the differentiable forward
process. Here, we want to get the edge probabilities that ap-
proximate the constrained edges E, which can be denoted
as

y(i,j) =

[1 , 0]

⊤
((i, j) ∈ E+)

[0 , 1]
⊤

((i, j) ∈ E−)[
ŷ+(i,j), ŷ

−
(i,j)

]⊤
(otherwise).

(S3)

∼

[1− ϵ, ϵ]

⊤
((i, j) ∈ E+)

[ϵ , 1− ϵ]
⊤

((i, j) ∈ E−)[
ŷ+(i,j), ŷ

−
(i,j)

]⊤
(otherwise).

(S4)

When ϵ is small enough, the constrained output y(i,j) per-
fectly mimics the output by the projection function P . Our
goal is to modify the feature vector f̂(i,j) so that it makes
the probabilities as Eq. (S4) through the softmax activation.

In the SFS layer, we replace the features as

f−
(i,j) := −Λ ((i, j) ∈ E+)

f+
(i,j) := −Λ ((i, j) ∈ E−),

(S5)

where Λ is assumed to be large enough. Given modified
features f(i,j) = [f+

(i,j), f
−
(i,j)]

⊤, the softmax activation σ

1

normalizes and converts them to edge probability y(i,j) as

y(i,j) =

σ([f̂+

(i,j), −Λ]⊤) ((i, j) ∈ E+)

σ([−Λ , f̂−
(i,j)]

⊤) ((i, j) ∈ E−)

σ([f̂+
(i,j), f̂

−
(i,j)]

⊤) (otherwise).

(S6)

Without loss of generality, we discuss the case in (i, j) ∈
E+. Substituting Eq. (S6) into Eq. (S1) yields

y(i,j) =

[
exp(f̂+

(i,j)
)

exp(f̂+
(i,j)

)+exp(−Λ)
, exp(−Λ)

exp(f̂+
(i,j)

)+exp(−Λ)

]⊤
=

[
exp(f̂+

(i,j)
)

exp(f̂+
(i,j)

)+ϵ′
, ϵ′

exp(f̂+
(i,j)

)+ϵ′

]⊤
((i, j) ∈ E+),

where ϵ′ = exp(−Λ) ∼ 0 when Λ is large enough, lead-
ing to y(i,j) = [1 − ϵ, ϵ]⊤ as in Eq. (S4) by denoting
ϵ = ϵ′

exp(f̂+
(i,j)

)+ϵ′
∼ 0.

A.3. Detailed analysis

We describe a detailed analysis of our reparameteriza-
tion layer. As described in (S6), the unconstrained edge
feature between i and j-th nodes f̂(i,j) = [f̂+

(i,j), f̂
−
(i,j)]

⊤ is
converted to constrained prediction of the edge availabil-
ity y(i,j) = [y+(i,j), y

−
(i,j)]

⊤ by selectively suppressing un-
wanted feature values.

When using the cross-entropy loss LCE to evaluate the
availability of the graph edges, the derivative to be back-
propagated to the backbone graph generator is 1

∂LCE

∂ f̂
=

[(1− ϵ)− t+, 0]

⊤
((i, j) ∈ E+)

[0 , (1− ϵ)− t−]
⊤

((i, j) ∈ E−)

[y+ − t+ , y− − t−]
⊤

(otherwise),

(S7)

∼

[1− t+ , 0]

⊤
((i, j) ∈ E+)

[0 , 1− t−]
⊤

((i, j) ∈ E−)

[y+ − t+, y− − t−]
⊤

(otherwise),

(S8)

where t = [t+, t−]⊤ denotes the ground truth edge exis-
tence and non-existence for the node pair (i, j). Our method
modifies the computation graph of the network when the
MST algorithm does not agree with the output of the graph
generation model (i.e., (i, j) ∈ E+ ∪ E−), but in different
ways for derivatives of each feature value ∂LCE

∂f̂+
or ∂LCE

∂f̂− .
Table S1 summarizes the case-by-case behavior, in

which we can categorize the behaviors of the SFS layer into
eight cases. Hereafter, we use E∗ ≜ E+ ∪ E−.

Case (i, j) /∈ E∗ (Cases 1, 2, 5, 6) When the graph algo-
rithm (i.e., MST) does not modify the edge availability (i.e.,

1We omit the subscript (i, j) for simplicity.

Table S1. Case-by-case analyses of our reparameterization layer.
For the columns of unconstrained features f̂ , constrained predic-
tion y, and the ground truth edge availability t, the table shows
the index of the larger element. For example, the column f̂ will
be + when the edge feature for the positive edge availability is
larger, i.e., f̂+ > f̂−. The column (i, j) displays E+ or E− if the
MST algorithm modifies the edge availability (in which the rows
are also highlighted). For the remaining columns, ↑ and ↓ denote
each value becoming (relatively) large or small, respectively.

Case Feats & probs GT Loss Approx. derivatives Descriptions
f̂ (i, j) y t LCE

∂LCE

∂f̂+

∂LCE

∂f̂−

∣∣∣∂LCE

∂f̂+

∣∣∣ ∣∣∣∂LCE

∂f̂−

∣∣∣
1 + + [1, 0]⊤ ↓ y+ − 1 y− ↓ ↓ Unmodified
2 + + [0, 1]⊤ ↑ y+ y− − 1 ↑ ↑ Unmodified
3 + E− − [1, 0]⊤ ↑ 0 1 ↓ ↑ MST incorrectly modified
4 + E− − [0, 1]⊤ ↓ 0 0 ↓ ↓ MST correctly modified

5 − − [1, 0]⊤ ↑ y+ − 1 y− ↑ ↑ Unmodified
6 − − [0, 1]⊤ ↓ y+ y− − 1 ↓ ↓ Unmodified
7 − E+ + [1, 0]⊤ ↓ 0 0 ↓ ↓ MST correctly modified
8 − E+ + [0, 1]⊤ ↑ 1 0 ↑ ↓ MST incorrectly modified

cases 1, 2, 5, and 6 in the table), the behavior is the same as
the usual cross-entropy loss for unconstrained edges.

Case (i, j) ∈ E∗ & y ∼ t (Cases 4, 7) In these cases,
the MST algorithm correctly suppresses the unwanted fea-
tures, where the constrained prediction y becomes the ap-
proximation of the ground-truth edge availability t. The
loss value becomes small, and the derivative is ∂LCE

∂ f̂
∼ 0.

This is natural since our constrained graph generator pro-
duces correct predictions.

Case (i, j) ∈ E∗ & y ≁ t (Cases 3, 8) In these cases,
MST incorrectly modifies the edge availability, i.e., the
node pair (i, j) belongs to E+ or E−, but the constrained
prediction y does not fit the ground truth t. Here, we math-
ematically discuss the behavior in these cases. Without loss
of generality, we focus on Case 3, where MST incorrectly
removes an edge and compares the methods with and with-
out tree-graph constraints using the SFS layer.

Case 3 (MST incorrectly removes an edge) The follow-
ing discussions can be straightforwardly extended to Case
8, where MST incorrectly adds an edge.

Conditions:
• Unconstrained prediction (edge exists): f̂+ > f̂−,

• MST removes the edge: (i, j) ∈ E−,

• GT edge availability (edge exists): [t+, t−] = [1, 0].

Unconstrained method (without SFS layer) The gradi-
ent at f̂+ by the unconstrained method is

∂Lunconst

∂f̂+
=

exp(f̂+)

exp(f̂+) + exp(f̂−)
− 1. (S9)

Since f̂+ > f̂−, it takes the value in the range of (−0.5, 0).
Similarly,

∂Lunconst

∂f̂−
=

exp(f−)

exp(f−) + exp(f+)
− 0, (S10)

thus the gradient at f̂− is inside (0, 0.5). Thus, the gradient
vector ∂Lunconst

∂ f̂
is always shorter than [−0.5, 0.5]⊤ (corre-

sponding to the special case f̂+ = f̂−).

Constrained method (Ours) As described in Eqs. (S7)
and (S8), our method yields the gradient as

∂Lconst

∂f̂+
= 0,

∂Lconst

∂f̂−
= 1− ϵ ∼ 1,

i.e., ∂Lconst

∂ f̂
∼ [0, 1]⊤.

Comparisons While both methods control the features to
increase the edge availability, the relation of gradient vec-
tors ∥∂Lconst

∂ f̂
∥ > ∥∂Lunconst

∂ f̂
∥ always holds, which means our

method strongly penalizes the incorrect estimates by MST
by directly comparing the final estimation (i.e., tree graph)
with the ground-truth edge availability, which highlights
our key motivation—a direct control of the tree-constrained
graph generation.

B. Dataset Details

We describe the details of the datasets used in our exper-
iment.

Synthetic tree pattern dataset To prepare the synthetic
dataset, we implement a generator of two-dimensional tree
patterns based on the L-system [9], a formal language for
describing the growth of the structural form. The L-system
recursively applies rewriting rules to the current structure to
simulate the growth of branching structures.

Figure S1 shows the initial structures and the rewriting
rules we used. At the beginning of the tree generation, an
initial sequence is randomly chosen from the pre-defined se-
quences marked with a purple frame in the figure. At each
iteration during the tree generation, the leaf edges (“A” in
the sequences) are replaced by a randomly chosen pattern
from eight pre-defined ones. A simple example is shown
in Fig. S2. We iterate the rewriting process a maximum of
three times to generate a tree pattern. We also add random-
ness to the branch length and joint angles in our dataset.
We randomly choose a branch length of scaling [0.5, 2.5]
and joint angles of [10◦, 35◦].

A0

F0[-A0] F0[+A0]

F0[-A0]F0[+A0]A0 F0[+A0][-A0]

F0[+A0]A0

F0[+A0]F0[-A0]A0

F0[-A0]A0

Figure S1. Atomic structures used for synthetic dataset generation.
Three pre-defined initial structures are highlighted in purple. Eight
pre-defined rewriting rules are used during the generation.

(a) Initial structure (b) Rewriting rule (c) After rewriting process

Figure S2. An example of the rewriting process. Suppose the
initial structure is represented as F0[+A0]F0[-A0]A0. If a rewrite
rule F→F; A→F[-A] is applied, i.e., F remains unchanged and
A becomes F[-A], the result of the rewrite process is F0[+F1[-
A1]]F0[-F1[-A1]]F1[-A1]. The digits in the sequences indicate
the number of times the rewrite is applied.

Root dataset For the root dataset, the structure of the
early-growing roots of Arabidopsis is manually annotated.
The structures are annotated by placing points (i.e., graph
nodes) on the root path, where the distance between neigh-
boring points may vary depending on the annotator and the
images. We, therefore, resample the graph nodes with the
same intervals. Starting from keypoints with the degree ̸= 2
(i.e., joints and leaf nodes), we sample nodes at intervals of
8 pixels along continuous branch segments.

For data augmentation, we apply flipping, rotation, crop-
ping, noise, lighting, and scaling on the original images.
Supposing the roots are almost aligned at seeding, we limit
the range of rotation angles in [−9◦,+9◦].

Grapevine dataset We use 3D2cut Single Guyot
Dataset [4] containing manual annotations on branch struc-
tures. We perform data augmentation with rotation angles
in [−15◦,+15◦] in the same manner as [4]. This dataset
also contains the classification of nodes (four classes)
and edges (five classes) related to biological meanings.
Since the existing two-stage method [4] estimates these

Table S2. Quantitative comparisons between our re-implementation of [4] and our two-stage baseline implementation.

Method SMD ↓ TOPO score ↑ MSE ↓
Prec. Rec. F1 Node confidence Edge direction

Re-implementation of [4] 3.84× 10−3 0.459 0.365 0.406 6.95× 10−3 1.01× 10−2

Our implementation of two-stage method 4.24× 10−4 0.677 0.589 0.630 1.19× 10−3 2.67× 10−3

𝐻
4

,
𝑊
4

𝐻
8

,
𝑊
8

𝐻
16

,
𝑊
16

𝐻
32

,
𝑊
32

𝐻, 𝑊

𝐻
8

,
𝑊
8

𝐻
16

,
𝑊
16

𝐻
32

,
𝑊
32

Pre-trained ResNet50 module

Decoder

Node confidence maps

Edge direction maps

Down sampling

Up sampling

Concatenation

Figure S3. Network architecture for the first (skeletonization) stage of our two-stage baseline method.

categories, we follow the same setup for the two-stage
baseline method (refer to the next section for detailed dis-
cussions). For the other methods, including our TreeFormer
implementation, we use only the binary class information
(i.e., branch availability) for generalizability.

C. Details of Baseline Methods
We describe the implementation details for the baseline

methods: The two-stage method and the method with the
test-time constraint. Note the implementation for the other
baseline, the unconstrained method, is identical to the orig-
inal RelationFormer [11].

C.1. Two-stage baseline

Our experiment implements a two-stage baseline involv-
ing skeletonization and graph optimization. This baseline
implementation is based on ViNet [4], a state-of-the-art
plant skeleton estimation method. Since the implementation
of [4] is not publicly available, we re-implement the method
with reference to the descriptions in the paper. Through
the re-implementation, we find room for improvement in
the two-stage baseline method. Table S2 compares the per-
formance of our two-stage implementation with a naive re-
implementation of [4]. The SMD and TOPO scores are the
same metrics used in the main paper, and we also compare
the mean squared error (MSE) of the first-stage output of
both methods. Our implementation achieves a better per-
formance; thus, we use the improved version for our exper-

iment. In the following, we describe the implementation
details.

First stage: Skeletonization Similar to ViNet [4], the
first stage of our implementation outputs the prediction of
node and edge positions as single-channel confidence maps
and two-channel vector fields (hereafter referred to as node
confidence maps and edge direction maps, respectively).
This step is similar to a widespread human pose estimation
method i.e., OpenPose [3], which jointly estimates the con-
fidence of person keypoints and the Part Affinity Fields (i.e.,
two-channel vector fields).

While ViNet [4] uses a sequence of residual blocks fol-
lowed by the Stacked Hourglass Network [10] for this stage,
we use a pre-trained ResNet50 [5] for image feature extrac-
tion. This is for a fair comparison to our TreeFormer im-
plementation, which also uses ResNet50 as the backbone2.
We implement an architecture like the Feature Pyramid Net-
work (FPN) [8], illustrated in Fig. S3, to decode the node
& edge maps from the image features. Figure S4 visually
compares the estimated node & edge maps, showing a better
accuracy by our two-stage implementation.

The original ViNet estimates multiple classes of nodes
(four classes) and edges (five classes) as different maps
for the grapevine dataset. Compared to just using binary

2ResNet50 is actually used as the node detection module in Relation-
Former (that is based on Deformable DETR [12]), which is the basis of our
TreeFormer, and we inherited its implementation.

Shoot / x Shoot / y Cane / x Cane / y Branch node Root crown

Edge direction maps Node confidence maps

G
ro

un
d

T
ru

th
O

ur
 tw

o-
st

ag
e

R
e-

im
pl

of
 [

17
]

Figure S4. Visual comparisons between a re-implementation of [4] and our two-stage baseline implementation. Our implementation yields
better node confidence and edge direction maps, which are the outputs of the first stage of these methods.

Table S3. Parameters used for the two-stage baseline method. d denotes the distance threshold for the local maximum value search (i.e.,
non-maximum suppression) of node candidates. τm and τn are used as the thresholds for node detection from the confidence maps. For
the detailed definitions, refer to the original paper [4].

Dataset Image size Map size Node confidence Edge direction Node search distance Thresholds for node detection
(W, H) [px] (W, H) [px] diameter [px] width [px] d [px] τm τn

Synthetic 512, 512 512, 512 4 5 9 0.97 0.5
Root 570, 190 570, 190 3 5 7 0.99 0.3

Grapevine 1008, 756 256, 256 3 10 25 0.97 0.5

classes (i.e., a branch exists or not), our two-stage imple-
mentation also yields better estimation accuracies using the
multiple classes (SMD in 4.2 × 10−4 with multi-class and
1.4 × 10−2 with binary classes). Therefore, we use the
multi-class setup for our two-stage implementation of the
grapevine dataset. For the other dataset, we use binary clas-
sification since we do not have specific class information.

Second stage: Graph algorithm Given the node confi-
dence and edge direction maps, ViNet [4] first extracts the
node positions, followed by the computation of the resis-
tivity between each node pair, defined using the edge di-
rections and the Euclidean distance between nodes. The fi-
nal estimates of the graph structure are generated using the
Dijkstra algorithm, where the tree structure is obtained by
computing the shortest paths from all nodes to the detected
root crown. The resistivity is used as the edge cost for the
Dijkstra algorithm.

For the second stage, we follow the method in [4] except
for the graph algorithm used; namely, we compute MST
instead of the shortest paths given by the Dijkstra algorithm,
since using MST reduces the SMD metric to 4.2 × 10−4,
compared to 5.9 × 10−4 using the Dijkstra algorithm for
the grapevine dataset.

Detailed parameter settings The two-stage method in-
volves heuristic parameters for node and edge detection.
Therefore, we empirically select the best parameter sets for
each dataset. Table S3 lists the detailed parameters. In par-
ticular, for the root dataset, we need to carefully tune some
hyperparameters (namely, d, τm, and τn in the table) to
yield reasonable estimates, where the configurations yield-
ing the best SMD scores are reported in the main paper.

C.2. Test-time constraint baseline

For the test-time constraint baseline, we apply MST only
in the inference phase, where the graph generator is trained
using the same procedure as the unconstrained method. The
MST used in this baseline method is identical to our pro-
posed one.

D. Performance Analysis
In this section, we present a detailed analysis of the per-

formance of our proposed method. The effectiveness of our
method is evaluated through comprehensive experiments in
different scenarios. Specifically, we compare our method
with the Auto-regressive (AR) model, and we also analyze
the performance when our method is applied solely during
the training processes.

D.1. Comparison with auto-regressive (AR) method

While we implement the tree-graph constraint on the
state-of-the-art non-autoregressive graph generator, Rela-
tionFormer [11], other choices of constrained graph gener-
ation are viable. Existing works aiming for tree-constrained
graph generation, such as in molecule structure estima-
tion [1,6,7], use auto-regressive (AR) graph generation. AR
methods are a simpler choice for imposing the constraint
since it is relatively straightforward to implement the tree-
graph constraint in their graph development process. How-
ever, since the AR methods generate graph nodes and edges
progressively, they are prone to breakdowns due to changes
in the output order or errors during the generation. This ten-
dency is particularly pronounced for relatively large graphs,
including our setup.

To assess the potential of AR methods, we test the state-
of-the-art transformer-based AR graph generator, Genera-
tive Graph Transformer (GGT) [2]. Table S4 compares our
method and several variances of GGT on the synthetic tree
pattern dataset. The results show that the accuracy of GGT
falls short compared to our method, although the vanilla
GGT (the top row) mostly outputs tree graphs (92 %) with-
out explicitly imposing the tree-graph constraint. We iden-
tified that errors by GGT occurring at a particular step in the
AR generation process continuously cause errors in the se-
quence of following generations. The GGT was initially
designed for small datasets, specifically for graphs with
|V | ≤ 10. For our setup, where |V | ≥ 100, generating
these long sequences in a specific order presents a signifi-
cant challenge.

D.2. Effectiveness of tree-constraint during training

To assess whether our SFS layer (positively) affects the
training process itself or not, we evaluate our method with-
out using the SFS layer and the MST algorithm during the
inference phase, i.e., introducing constraint only during the

Table S4. Comparisons of different graph generation models (i.e.,
RelationFormer [11] and GGT [2]) on the synthetic dataset.

Method SMD ↓ TOPO score ↑ Tree rate
Prec. Rec. F1 [%]

GGT [2] 2.71× 10−3 0.635 0.537 0.582 92.06
GGT w/ test-time constraint 4.13× 10−3 0.620 0.545 0.580 98.10

GGT w/ SFS layer 2.80× 10−3 0.652 0.584 0.616 99.63
RelationFormer [11] w/ SFS layer (Ours) 4.78× 10−6 0.986 0.968 0.977 100.0

Table S5. Quantitative results with additional baseline, train-time
constraint.

Dataset Method SFS SMD ↓ TOPO score ↑ Tree rate
Prec. Rec. F1 [%]

Synthetic

Unconstrained 1.43× 10−5 0.978 0.929 0.953 36.2
Test-time constraint 6.26× 10−6 0.977 0.953 0.965 100.0
Train-time constraint ✓ 8.44× 10−6 0.987 0.954 0.970 56.5

Ours ✓ 4.78× 10−6 0.986 0.968 0.977 100.0

Root

Unconstrained 1.19× 10−4 0.831 0.633 0.719 35.9
Test-time constraint 1.52× 10−4 0.829 0.771 0.799 100.0
Train-time constraint ✓ 7.81× 10−5 0.853 0.619 0.718 37.2

Ours ✓ 8.82× 10−5 0.861 0.807 0.833 100.0

Grapevine

Unconstrained 1.45× 10−4 0.963 0.559 0.708 0.0
Test-time constraint 1.47× 10−4 0.896 0.840 0.867 100.0
Train-time constraint ✓ 1.30× 10−4 0.965 0.566 0.713 0.0

Ours ✓ 1.03× 10−4 0.899 0.843 0.870 100.0

training phase (called train-time constraint hereafter). Ta-
ble S5 summarizes the performances. Inducting the tree
constraint during the training phase mostly outperforms the
methods without constraints, meaning that the improvement
by our method is based on network improvement by the
loss propagated via the SFS layer. We also checked the
change in the accuracy metric during training, and found
our method consistently achieved better accuracy from the
beginning of the training.

E. Other Design Choices
The experiments in the main paper already provide some

ablation studies, namely, comparisons of our method with
1) graph generation without constraint (unconstrained), and
2) a method without using MST in the training loop (test-
time constraint). Here, we delve further into the potential
design choices of our TreeFormer model.

E.1. Other graph generators

Although the proposed module, the SFS layer, can be
easily integrated into graph generators other than Relation-
Former [11], we found that no methods but our TreeFormer
implementation achieve satisfactory results. Here, we dis-
cuss results by the implementation of our method to the AR
graph generator, GGT [2], which achieves the second-best
accuracy for multiple datasets following the state-of-the-art
RelationFormer.

Table S4 in the last section compares the GGT with and
without the tree-graph constraint. Compared to the GGT
with test-time MST, using our SFS layer on top of GGT
improves both SMD and TOPO scores3, although the ac-

3GGT w/ SFS layer does not achieve 100 [%] tree rate because it some-

Table S6. Ablation for Λ.

Λ SMD ↓ TOPO score ↑
Prec. Rec. F1

2 (exp(−Λ) = 1.4× 10−1) 1.51× 10−4 0.871 0.803 0.836
5 (exp(−Λ) = 6.7× 10−3) 1.27× 10−4 0.866 0.799 0.831
10 (exp(−Λ) = 4.5× 10−5) 1.03× 10−4 0.899 0.843 0.870
100 (exp(−Λ) = 3.7× 10−44) 1.07× 10−4 0.886 0.830 0.857

curacies are insufficient in practice due to the drawback of
AR-based generation processes discussed above. Using the
newer RelationFormer model significantly improves the es-
timation accuracy, which implies that our SFS layer will
benefit from the future development of graph generation
models.

E.2. Using node distances for edge cost in MST

Although our proposed method uses the edge non-
existence probabilities {ŷ−(i,j)} as the edge cost for the MST
algorithm, inspired by the two-stage method that uses node
distance for the edge cost computation, we multiply the Eu-
clidean distance between nodes by our original edge cost.

As a result, SMD with modified edge cost does not im-
prove accuracy (it achieves the same SMD as our method
in the Grapevine dataset). A possible reason for this is that
the graph generator itself can take the node distance into ac-
count when estimating graph edges. Therefore, we simply
use the edge non-existence probabilities {ŷ−(i,j)} as the edge
cost for our method.

E.3. Ablation for Λ

An important hyperparameter in our method is Λ, which
controls the level of suppression for unwanted features.
Here, we report an ablation study for this parameter us-
ing the grapevine dataset. Table S6 shows that our choice
(Λ = 10) achieves better, while the changes in Λ do not sig-
nificantly affect the overall accuracy as long as exp(−Λ) is
close enough to zero. This result indicates that our method
is robust to the hyperparameter setting.

F. Additional Visual Results

We finally show additional visual results. Figures S5
and S6 show the additional results for synthetic and root
datasets, respectively. Figures S7 and S8 show the results
for the grapevine dataset. Figure S9 show the results for
out-of-domain testing.

These results consistently demonstrate the high-fidelity
estimation of plant skeletons by our TreeFormer, which uses
the SFS layer that incorporates the constraints while train-
ing graph generation models.

times fails to generate any graphs.

References
[1] Sungsoo Ahn, Binghong Chen, Tianzhe Wang, and Le Song.

Spanning tree-based graph generation for molecules. In Pro-
ceedings of International Conference on Learning Represen-
tations (ICLR), 2022. 6

[2] Davide Belli and Thomas Kipf. Image-conditioned graph
generation for road network extraction. In Proceedings
of NeurIPS Workshop on Graph Representation Learning,
2019. 6

[3] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Re-
altime multi-person 2D pose estimation using part affinity
fields. In Proceedings of IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017. 4

[4] Theophile Gentilhomme, Michael Villamizar, Jerome Corre,
and Jean-Marc Odobez. Towards smart pruning: ViNet,
a deep-learning approach for grapevine structure estima-
tion. Computers and Electronics in Agriculture, 207:107736,
2023. 3, 4, 5

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016. 4

[6] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junc-
tion tree variational autoencoder for molecular graph genera-
tion. In Proceedings of International Conference on Machine
Learning (ICML), pages 2323–2332, 2018. 6

[7] Wengong Jin, Regina Barzilay, and T. Jaakkola. Hierarchi-
cal generation of molecular graphs using structural motifs. In
Proceedings of International Conference on Machine Learn-
ing (ICML), 2020. 6

[8] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In Proceedings of IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2117–2125, 2017. 4

[9] Aristid Lindenmayer. Mathematical models for cellular in-
teractions in development I. Filaments with one-sided inputs.
Journal of Theoretical Biology, 18(3):280–299, 1968. 3

[10] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation. In Proceedings
of European Conference on Computer Vision (ECCV), pages
11–16, 2016. 4

[11] Suprosanna Shit, Rajat Koner, Bastian Wittmann, Johannes
Paetzold, Ivan Ezhov, Hongwei Li, Jiazhen Pan, Sahand
Sharifzadeh, Georgios Kaissis, Volker Tresp, et al. Relation-
former: A unified framework for image-to-graph generation.
In Proceedings of European Conference on Computer Vision
(ECCV), pages 422–439, 2022. 4, 6

[12] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable DETR: Deformable transform-
ers for end-to-end object detection. In Proceedings of In-
ternational Conference on Learning Representations (ICLR),
2021. 4

Ground truth Test-time constraintUnconstrained OursTwo-stage

Figure S5. Additional results for the synthetic branch pattern dataset.

Ground truth Test-time constraintUnconstrained OursTwo-stage

Figure S6. Additional results for the root dataset.

Ground truth Test-time constraintUnconstrained OursTwo-stage

Figure S7. Additional results for the grapevine dataset.

Ground truth Test-time constraintUnconstrained OursTwo-stage

Figure S8. Additional results for the grapevine dataset (cont’d).

Figure S9. Additional results for the out-of-domain test dataset.

	. Details of SFS layer
	. Motivation
	. Derivation
	. Detailed analysis

	. Dataset Details
	. Details of Baseline Methods
	. Two-stage baseline
	. Test-time constraint baseline

	. Performance Analysis
	. Comparison with auto-regressive (AR) method
	. Effectiveness of tree-constraint during training

	. Other Design Choices
	. Other graph generators
	. Using node distances for edge cost in MST
	. Ablation for

	. Additional Visual Results

