Boosting Diffusion Guidance via Learning Degradation-Aware Models for Blind Super Resolution [Supplementary Material]

Shao-Hao Lu¹ Ren Wang² Ching-Chun Huang¹ Wei-Chen Chiu¹ ¹National Yang Ming Chiao Tung University ²MediaTek Inc. {shlu2240.cs11, chingchun, walon}@nycu.edu.tw ren.wang@mediatek.com

Here, we provide 1) the details of training data preparation, 2) methodology of the explicit kernel estimator used in our ablation study for both the *explicit* and *combine* experiments, and 3) more qualitative results.

1. Training Data Preparation

To train our degradation and restoration models, we need to generate LR-HR paired data. For the DIV2K dataset with unknown degradation, the LR-HR paired images have been provided, and we just randomly crop HR patches of resolution 256×256 and their corresponding LR patches of resolution 64×64 during training.

For the CelebA-HQ dataset, which only consists of HR images, we generate LR images by performing convolution with random anti-isotropic Gaussian kernels, where the stride is equal to the degradation scale. Following Wang *et al.* [2], we diversify these kernels by sampling some additional parameters. Specifically, the filter size is sampled from the odd numbers in the range of [7, 21]. The weights are determined by two eigenvalues λ_1 and λ_2 of a covariance matrix, both of which are sampled from a uniform distribution $\mathcal{U}(0.2, 4)$. We also apply rotation to these kernels with an angle $\theta \sim \mathcal{U}(0, \pi)$.

2. Explicit Kernel Estimator

Both of our *explicit* and *combine* approaches involve integrating an explicit kernel estimator into DDNM [3]. Given a degraded image y, the estimator \mathcal{E} predicts the corresponding degradation kernel. Following the architecture proposed by Lian *et al.* [1], we train the estimator using the ground truth kernel as supervision. The training objective aims to minimize the \mathcal{L}_1 loss between the estimated kernel and the ground truth kernel k as

$$\mathcal{L}_k = \|\mathbf{k} - \mathcal{E}(\mathbf{y}; \theta_e)\|_1. \tag{1}$$

After obtaining the predicted kernel, we turn the convolution with this kernel into a matrix multiplication with a matrix **A**. Furthermore, we can compute its pseudo-inverse \mathbf{A}^{\dagger} using SVD, and directly plug **A** and \mathbf{A}^{\dagger} into DDNM. However, this explicit kernel estimator assumes the degradation is a convolution with kernel, which might lead to over-simplification. Therefore, our *implicit* method shows better performance than *explicit* and *combine* methods in the ablation study.

Note that we do not have ground-truth kernels for the DIV2K dataset with unknown degradation, which are necessary to train the estimator \mathcal{E} . As a result, we adopt the pipeline used for generating training data to sample kernels, and use them to not only generate LR-HR pairs but also train the estimator \mathcal{E} .

3. More Qualitative Results

We provide more qualitative results on the *ImageNet-Val* and *CelebA-Val* datasets in Figs. 1–3.

References

- Wenyi Lian and Shanglian Peng. Kernel-aware burst blind super-resolution. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pages 4892– 4902, 2023.
- [2] Longguang Wang, Yingqian Wang, Xiaoyu Dong, Qingyu Xu, Jungang Yang, Wei An, and Yulan Guo. Unsupervised degradation representation learning for blind super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10581–10590, 2021. 1
- [3] Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion null-space model. arXiv preprint arXiv:2212.00490, 2022. 1

Figure 1. Qualitative comparison of $4 \times$ upsampling on *ImageNet-Val*.

Figure 2. Qualitative comparison of 4× upsampling on *CelebA-Val*.

Figure 3. Qualitative comparison of 8× upsampling on *CelebA-Val*.