
Supplementary Material

A. Ablation on Decoupled Optimization

Figure 1 illustrates the impact of employing a decoupled
optimization strategy on convergence outcomes. The green
and red circles represent corresponding matching points on
the observed and rendered images.

In Figure 1(a), the upper half indicates the scenario
where only rotational perturbations exist, while the lower
half pertains to translational perturbations alone. If there
are only rotational perturbations, the angles between vec-
tors formed by matching points tend to intertwine; however,
in the case of only translational perturbations, these vec-
tors tend to be parallel (i.e., smaller angles). Thus, in the
optimization process, rotational errors can be optimized by
reducing the angles between vectors, while translational er-
rors can be optimized by shortening the distances between
point pairs. The advantage of this approach is that it pre-
vents the direct influence of point pair distances on the ro-
tation because when the translation distance is significant,
the gradient direction provided by point pair distances may
not accurately gauge the correctness of the rotation, and if
the updated rendered image fails to match well with the ob-
served image, optimization is likely to get stuck in local
minima.

In Figure 1(b), the upper half does not use a decoupled
optimization strategy, while the lower half does. Without
the decoupled optimization strategy, we can see that the
distances between feature points are reduced, leading to de-
creased translational error. However, the large initial error
causes all vectors to intertwine, trapping rotational error in a
local minimum. However, using the decoupled optimization
strategy, all vectors remain parallel during the convergence
process, and the distances between matching points are si-
multaneously reduced, ultimately achieving successful con-
vergence. Figure 1(c) shows the corresponding trajectory.

B. Detailed Experiments Configuration

All other methods in the experiments use the Adam opti-
mizer and compute the photometric loss with L2. In our ex-
periments, the iNeRF method [11], different from the orig-
inal setting, uses the more efficient 3DGS [4] as the scene
representation, with a batch size of 512 and a sampling strat-
egy focused on interest regions. Pose optimization is based

on gradient-based SE(3) optimization. The initial learning
rate is set to 0.05, with exponential decay based on a decay
rate of 0.8 and a base step of 100, and the total number of
iterations is 500. The iNeRF† differs from iNeRF only in
that the photometric loss is computed over the entire image.
The pNeRF [5] uses InstantNGP [7] as the scene representa-
tion, with a total of 2560 optimization steps. Parallel Monte
Carlo sampling is conducted every 512 steps, and pose op-
timization is based on gradient-based SO(3) × T(3). The
learning rates for the translation and rotation parts start from
3 × 10−3 and 5 × 10−3 , respectively, and decay exponen-
tially based on a decay rate of 0.33 and a base step of 256.
The iComma [10] uses 3DGS as the scene representation
and performs gradient-based SE(3) pose optimization, us-
ing [9] to obtain corresponding feature points between the
query image and the rendered image, with a total of 500
iterations.

C. Efficiency Analysis

All experiments were tested on an RTX 4090 GPU. The
storage requirements for the 3D Gaussian scene models
vary depending on the scene size, but most fall within the
50 to 800 MB range. The time cost for pose estimation
consists of Monte Carlo initialization and decoupled opti-
mization. Under standard convergence conditions, Monte
Carlo initialization takes an average of 1.29 seconds at a
rendering resolution of 800, while decoupled optimization
takes an average of 1.68 seconds for decoupled optimization
(10 iterations). Although the execution speed cannot match
traditional visual estimation methods, our framework sur-
passes them in pose estimation accuracy. Additionally, it
is applicable in scenarios where the initial pose cannot pro-
vide effective co-visibility and does not require additional
training for global image descriptors or an image retrieval
database.

D. Additional Qualitative Results

Figure 2 presents additional visualization results on differ-
ent datasets. From this figure, we can observe that iNeRF†
and iComMa [10] often tend to get trapped in local minima,
especially in regions with high-frequency textures. Our pro-
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Figure 1. Visualization of Decoupled Optimization.

posed method effectively avoids these situations. However,
in the third row, our method also shows incomplete con-
vergence due to a terrible initial condition. Additionally,
unblended visualization results are provided in Figure 3.

E. Quantitative Error Analysis

Table 2 presents the quantitative results of each method in
each scene under the setting based on perturbed ground-
truth poses. In addition to the success rates of the differ-
ent methods, Table 3 and Table 4 present the median and
mean numerical errors of the 6 DoF poses for each method.
pNeRF [5] demonstrates superior numerical errors on the
NeRF-Synthetic [6] dataset compared to iNeRF [11], which
is not reflected in the success rates. Compared to iComMa
[10], our proposed method achieves the smallest errors in
most rotational and translational errors.

Table 5 illustrates the performance of our proposed
method under random initial poses. We selected six scenes
(lego, mic, chair, bicycle, garden, room) for testing. And
we randomly selected five images from each scene for test-
ing, with each image subjected to ten different initial poses.
Monte Carlo initialization significantly improves conver-
gence in cases of large errors. In comparison, using only
decoupled optimization may result in poor convergence due
to large errors, potentially incorrect matching points, and
overly complex interleaving. However, the Monte Carlo
initialization provides better initial poses, and when com-
bined with decoupled optimization, it further enhances the
final convergence performance. Ultimately, our proposed
method achieves the best overall performance.

F. Ablation on Different Photometric Loss

We also evaluated the impact of different loss functions on
performance. We selected three types of pure photometric
loss and three types of combined loss for the experiments.

Other loss functions are not listed here due to their gener-
ally poorer performance. The combined losses are applied
on top of the L2 loss with additional weighted losses. Fea-
ture point weighting uses the same feature point sampling
strategy as [11], with a weighting coefficient of 0.7. Corner
point weighting employs the Shi-Tomasi corner detector [8]
for corner detection, followed by dilation with a kernel size
of 51, with a weighting coefficient of 7.5 × 10−5. Blur
weighting applies Gaussian blurring on both the rendered
and observed images, using MSE loss, with σ set to 5 and a
weighting coefficient of 0.8.

Table 1 shows that when approaching the ground-truth,
L2, feature point weighting, and corner point weighting do
not show superior performance. The reason is that when the
pose is closing global minimum, supervision does not need
to focus excessively on specific regions, and overemphasis
on particular parts only allows high-frequency noise to af-
fect optimization directions. In contrast, using L1 and blur
weighting, the overall success rates achieve the best. This
indicates that more stable (with lower variation) loss can
provide more global consistent guidance when only fine op-
timization is needed. That is why we chose the L1 distance
as our refinement loss.

G. Comparison across different perturbation
levels

Figure 4 illustrates the performance of iComMa [10], iN-
eRF†, and our method under different perturbation condi-
tions. The horizontal axis represents the number of steps,
while the vertical axis shows the percentage of the scene
achieving an error below the threshold at each step. We set
two initial perturbation conditions: rotation at ±[0°, 30°]
with translation of ±[0, 0.5], and rotation at ±[30°, 60°]
with translation of ±[0.5, 1.0]. We observed that iNeRF†
performs better under smaller initial error conditions, ex-
ceeding its performance in larger initial error by more than



Table 1. Ablation study of different photometric loss functions

Loss
Rot. err. <5° Trans. err. <0.05 units

Synthetic [6] Mip-360 [2] DB [3] Mean Synthetic [6] Mip-360 [2] DB [3] Mean

L1 0.977 0.990 0.963 0.977 0.893 0.967 0.927 0.929
L2 0.977 0.960 0.947 0.961 0.803 0.900 0.920 0.874
Relative L2 0.963 0.973 0.950 0.962 0.920 0.923 0.893 0.912
Feature weight 0.933 0.873 0.847 0.884 0.900 0.817 0.810 0.842
Corner weight 0.777 0.870 0.820 0.822 0.777 0.783 0.823 0.794
Blur weight 0.960 0.977 0.953 0.963 0.940 0.947 0.917 0.934

Table 2. Quantitative comparison with perturbed ground-truth poses on NeRF-Synthetic, LLFF, Mip-NeRF 360, and Deep Blending
Datasets.

Dataset / Methods
Standard threshold (5° & 0.05units) Hard threshold (1° & 0.01units)

iNeRF pNeRF iNeRF† iComMa Ours iNeRF pNeRF iNeRF† iComMa Ours[11] [5] [10] [11] [5] [10]

Sy
nt

he
tic

Chair 0.00 0.02 0.37 0.72 0.98 0.00 0.00 0.18 0.72 0.98
Drums 0.00 0.00 0.19 0.69 0.96 0.00 0.00 0.19 0.67 0.96
Ficus 0.00 0.00 0.26 0.68 0.94 0.00 0.00 0.25 0.68 0.94
Hotdog 0.03 0.00 0.75 0.75 0.85 0.00 0.00 0.63 0.65 0.85
Lego 0.08 0.03 0.50 0.77 0.97 0.01 0.00 0.50 0.76 0.97
Materials 0.04 0.00 0.09 0.54 0.80 0.01 0.00 0.09 0.54 0.79
Mic 0.00 0.00 0.12 0.67 0.69 0.00 0.00 0.05 0.45 0.40
Ship 0.00 0.00 0.45 0.71 0.98 0.00 0.00 0.42 0.70 0.98
Average 0.019 0.006 0.346 0.694 0.894 0.003 0.000 0.289 0.605 0.868

L
L

FF

Fern 0.00 0.00 0.32 0.86 1.00 0.00 0.00 0.00 0.25 0.08
Fortress 0.00 0.00 0.37 0.71 0.99 0.00 0.00 0.01 0.15 0.40
Horns 0.00 0.00 0.35 0.69 0.80 0.00 0.00 0.10 0.36 0.60
Room 0.00 0.00 0.14 0.49 1.00 0.00 0.00 0.00 0.20 0.10
Average 0.000 0.000 0.295 0.688 0.948 0.000 0.000 0.028 0.242 0.295

M
ip

-N
eR

F
36

0

Bicycle 0.00 0.00 0.05 0.56 0.89 0.00 0.00 0.01 0.52 0.89
Bonsai 0.00 0.00 0.12 0.87 0.97 0.00 0.00 0.09 0.87 0.97
Counter 0.00 0.00 0.12 0.72 0.97 0.00 0.00 0.08 0.72 0.97
Garden 0.00 0.00 0.07 0.82 0.99 0.00 0.00 0.00 0.82 0.99
Kitchen 0.00 0.00 0.10 0.68 0.82 0.00 0.00 0.02 0.59 0.68
Room 0.00 0.00 0.21 0.67 0.98 0.00 0.00 0.20 0.67 0.98
Stump 0.00 0.00 0.00 0.48 0.76 0.00 0.00 0.00 0.47 0.76
Average 0.000 0.000 0.095 0.686 0.911 0.000 0.000 0.057 0.657 0.890

D
ee

p
B

le
nd

in
g Bedroom 0.00 - 0.16 0.55 0.96 0.00 - 0.08 0.44 0.76

Bridge 0.00 - 0.04 0.18 0.51 0.00 - 0.02 0.18 0.45
Creepyattic 0.00 - 0.14 0.50 0.90 0.00 - 0.11 0.48 0.75
Drjohnson 0.00 - 0.16 0.40 0.89 0.00 - 0.12 0.35 0.76
Playroom 0.00 - 0.16 0.61 1.00 0.00 - 0.09 0.43 0.59
Average 0.000 - 0.132 0.448 0.852 0.000 - 0.084 0.376 0.662

twofold. When dealing with larger errors, iNeRF† strug-
gles to converge effectively, indicating that pixel-level com-
parison errors are insufficient to provide adequate super-

vision in high-error scenarios. iComMa’s matching mod-
ule can quickly reduce errors in smaller initial error cases,
achieving good results. However, in larger initial error con-



Table 3. 6-DoF Median Errors on NeRF-Synthetic, LLFF, Mip-NeRF 360, and Deep Blending Datasets.

Dataset / Methods
Rotation error (deg) Translation error (units)

iNeRF pNeRF iNeRF† iComMa Ours iNeRF pNeRF iNeRF† iComMa Ours[11] [5] [10] [11] [5] [10]

Sy
nt

he
tic

Chair 59.291 18.904 47.556 0.035 0.011 3.281 1.355 2.027 0.002 0.001
Drums 80.101 32.152 58.889 0.029 0.010 3.881 1.926 2.981 0.002 0.001
Ficus 63.946 35.972 68.043 0.034 0.025 3.387 2.236 4.215 0.003 0.002
Hotdog 65.545 13.454 0.089 0.084 0.032 3.281 0.872 0.006 0.006 0.002
Lego 53.696 13.504 10.490 0.027 0.000 2.454 0.840 0.455 0.002 0.000
Materials 56.216 27.399 46.667 0.045 0.021 2.924 1.763 2.696 0.004 0.002
Mic 63.438 37.709 58.216 0.359 0.411 3.234 2.237 3.276 0.029 0.034
Ship 71.757 57.077 29.202 0.065 0.012 3.722 3.385 1.641 0.005 0.000
Average 64.249 29.521 39.894 0.085 0.065 3.271 1.827 2.162 0.007 0.005

L
L

FF

Fern 37.078 80.713 0.726 0.031 0.025 3.200 4.259 0.073 0.015 0.015
Fortress 25.316 78.143 0.622 0.105 0.093 3.159 4.188 0.076 0.021 0.013
Horns 54.294 84.718 20.905 0.034 0.023 2.838 4.313 1.990 0.018 0.009
Room 71.767 83.500 38.946 0.302 0.017 3.421 4.162 3.127 0.232 0.015
Average 47.114 81.768 15.300 0.118 0.039 3.154 4.230 1.316 0.072 0.013

M
ip

-N
eR

F
36

0

Bicycle 79.836 66.055 62.508 0.047 0.021 3.871 3.734 3.841 0.006 0.002
Bonsai 70.657 67.981 48.617 0.019 0.014 3.845 3.705 2.867 0.002 0.001
Counter 68.727 69.089 49.979 0.023 0.018 4.102 3.974 3.012 0.001 0.001
Garden 74.483 76.227 46.187 0.018 0.009 3.998 3.965 3.636 0.002 0.001
Kitchen 57.554 70.913 41.210 0.036 0.031 3.270 3.331 3.013 0.001 0.001
Room 70.591 77.848 49.328 0.026 0.015 4.278 3.035 3.581 0.003 0.003
Stump 78.318 69.224 62.179 0.238 0.027 3.845 3.758 3.954 0.107 0.002
Average 71.452 71.048 51.430 0.058 0.019 3.887 3.643 3.415 0.017 0.002

D
ee

p
B

le
nd

in
g Bedroom 66.498 - 62.413 0.109 0.063 2.864 - 3.149 0.017 0.006

Bridge 69.947 - 62.046 60.636 0.974 3.771 - 3.243 3.749 0.038
Creepyattic 71.326 - 53.132 0.445 0.032 4.230 - 3.195 0.048 0.003
Drjohnson 70.588 - 59.671 17.057 0.083 2.763 - 2.417 1.474 0.007
Playroom 64.986 - 48.874 0.180 0.054 2.791 - 3.537 0.025 0.008
Average 68.669 - 57.227 15.686 0.241 3.284 - 3.108 1.063 0.013

ditions, fewer matching keypoints may limit its effective-
ness. In contrast, our proposed Monte Carlo initialization
not only obtains better covisible initial poses but also al-
lows the decoupled optimization method to converge more
quickly in the translation part compared to iComMa. Even
under stringent initial conditions, our method consistently
demonstrates higher and more stable success rates.

H. Limitations

Although our method can handle challenging initial con-
ditions (such as larger errors or incorrect initial poses), it
still requires a pose initialization stage to obtain the input
camera pose. Most existing methods that do not require an
initial pose rely on deep learning models (e.g., NetVLAD
[1]), which introduce additional training and computational

costs. In fact, the need for an initial pose represents a trade-
off between search cost and convergence accuracy in our
work. As shown in ??, while our method can still achieve
optimal results with random initialization, its performance
decreases slightly. However, by expanding the sampling
range, the convergence improves significantly, albeit at the
cost of higher computational demands. Moreover, the pro-
posed decoupled optimization strategy may reduce the suc-
cess rate when applied independently. The main reason is
the underlying assumption in our decoupled strategy: the
parallelism between point pairs should provide a rough op-
timization direction at the initial pose stage, as shown in
Figure 1(a). Under uncontrolled initial poses, a large num-
ber of interwoven and misaligned vectors can obscure the
overall parallelism. The Monte Carlo-based initialization
helps improve performance because the multiple sampled



Table 4. 6-DoF Mean Errors on NeRF-Synthetic, LLFF, Mip-NeRF 360, and Deep Blending Datasets.

Dataset / Methods
Rotation error (deg) Translation error (units)

iNeRF pNeRF iNeRF† iComMa Ours iNeRF pNeRF iNeRF† iComMa Ours[11] [5] [10] [11] [5] [10]

Sy
nt

he
tic

Chair 67.552 27.580 48.290 25.234 1.712 3.458 1.724 2.276 1.279 0.109
Drums 81.249 41.072 52.878 29.549 4.014 4.016 2.138 3.063 1.542 0.267
Ficus 69.525 45.382 61.864 25.855 6.322 3.723 2.370 3.451 1.522 0.251
Hotdog 68.922 22.516 18.252 19.054 8.010 3.416 1.270 1.112 1.045 0.522
Lego 59.939 20.236 39.973 22.878 2.471 2.860 1.170 2.282 1.151 0.150
Materials 54.497 39.126 46.523 35.870 10.677 3.061 2.192 2.889 2.013 0.719
Mic 65.914 51.113 61.755 20.053 1.910 3.314 2.616 3.440 1.071 0.127
Ship 75.480 61.970 43.354 38.455 0.536 3.876 3.426 2.242 1.631 0.036
Average 67.885 38.624 46.611 27.119 4.456 3.465 2.113 2.595 1.407 0.273

L
L

FF

Fern 46.542 78.444 16.891 6.396 0.024 3.209 4.461 1.894 0.485 0.014
Fortress 41.686 76.998 16.054 23.569 0.089 3.682 4.317 1.067 1.507 0.015
Horns 57.463 81.563 30.665 18.858 0.346 3.749 4.425 3.291 1.367 0.222
Room 71.690 80.982 49.502 40.983 0.015 4.304 4.311 3.246 2.297 0.016
Average 54.346 79.497 28.278 22.451 0.118 3.736 4.378 2.375 1.414 0.067

M
ip

-N
eR

F
36

0

Bicycle 79.662 73.560 60.770 21.201 0.076 4.180 3.903 3.730 1.545 0.038
Bonsai 71.156 70.938 51.167 7.973 0.259 3.935 3.857 2.992 0.453 0.029
Counter 72.566 70.405 52.814 26.854 0.842 4.270 3.908 3.194 1.714 0.044
Garden 75.342 75.818 54.602 11.662 0.101 4.104 4.137 3.838 0.850 0.007
Kitchen 62.938 71.974 45.388 27.375 0.091 3.519 3.569 3.057 1.513 0.019
Room 72.896 79.245 54.521 30.190 0.217 4.355 3.417 3.364 1.903 0.035
Stump 80.516 71.040 62.358 19.104 4.258 4.011 3.890 3.865 1.269 0.197
Average 73.582 73.283 54.517 20.623 0.835 4.054 3.812 3.434 1.321 0.053

D
ee

p
B

le
nd

in
g Bedroom 69.601 - 58.148 26.955 0.138 3.586 - 3.325 1.662 0.012

Bridge 73.174 - 69.996 59.546 20.820 3.932 - 3.959 3.828 0.983
Creepyattic 74.430 - 58.674 31.031 1.067 4.554 - 3.849 2.199 0.114
Drjohnson 73.158 - 61.888 48.160 4.067 3.328 - 2.971 2.509 0.244
Playroom 67.376 - 53.277 25.315 0.106 3.593 - 3.468 1.337 0.014
Average 71.548 - 60.396 38.201 5.240 3.798 - 3.514 2.307 0.273

Table 5. Ablation study of different proposed strategies with ran-
domly selected initial poses.

Rot. (deg) Trans. (units)
MC DO Loss

<5 <1 <0.05 <0.01

0.510 0.497 0.480 0.460
✓ 0.717 0.677 0.643 0.603

✓ 0.513 0.510 0.487 0.470
✓ ✓ 0.797 0.767 0.730 0.710
✓ ✓ ✓ 0.847 0.793 0.773 0.757

hypotheses typically yield an initial pose with a better align-
ment of point pairs, which in turn enhances the effectiveness
of the decoupled optimization.
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