
Supplementary Material for From Visual Explanations to Counterfactual
Explanations with Latent Diffusion

A. Proof
In this section, we provide the proofs for the proposi-

tions. Our objective is to assess the degree of deviation
in optimization when replacing the gradient u∗, which is
the fastest direction, with the pruned gradient v∗. Addi-
tionally, we establish the relationship between convergence
and the thresholds ξd. We restate the terminology previ-
ously mentioned in the main paper: Suppose ξ∗ is the op-
timal threshold to split foreground F∗ and background B∗.
A = F ∪ B represents the set of all pixel coordinates in
the original image IF. First, c : RH2×W2×1 → RH2×W2×C

expands latent mask by concatenating this binary mask it-
self C times along the channel dimension. Second, let
g : RH2×W2×C → RH2W2C map the space H2 ×W2 × C
to a vector of dimension H2W2C, where H2,W2, C is the
height, width, channel of latent space. M′ represents the
latent mask corresponding to the optimal threshold ξ∗.

Proposition 1. Let u∗ = g
(
∇zinitLCE
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fcl
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I (k)

)
, yCF

))
is

the optimal vector, and v∗ = m′⊙u∗ represents the pruned
adversarial gradient vector with m′ = g(c(M′)). Then

0◦ ≤ ∠(u∗,v∗) < 90◦, (1)

where u∗ = (u1,1,1, . . . , uH2,W2,1, . . . , uH2,W2,4), ui,j,s

represents the element corresponding to γ(k)
i,j,s.
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Obviously:

0◦ ≤ ∠ (u∗,v∗) < 90◦. (2)

Proposition 2. Suppose that {ξd}∞d=1 is a sequence of
thresholds satisfying:

0 ≤ ξd < ξd+1 < 1. (3)

Then there exists a sequence of vectors
{
v(d)

}∞
d=1

such
that:
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≤ · · · ≤ ∠
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)
< 90◦. (4)

Proof. For Equation 3, we have the foreground and back-
ground sets corresponding to each threshold ξ that sat-
isfy the following conditions: Fd ⊇ Fd+1, Bd ⊆ Bd+1,
A = Fd ∪ Bd, where d ∈ N∗. Thanks to Proposition 1, we
continue to analyze:
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Therefore:
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≤ 90◦,∀d ∈ N∗.

(8)

This proof is complete.

B. Overview of ECED
In this section, we provide the following information and

material.

• Algorithms of our ECED.

• The implementation details and hyperparameter con-
figurations of Latent Diffusion.

• Fine-tuning strategy for Stable Diffusion on the
CelebA-HQ dataset.



• The ability to leverage the context of Latent Diffusion.

• The efficiency of blending latents.

• The preservation strategy of our method.

• More qualitative results.

B.1. Algorithms

Algorithm 1 Identifying key region

Require: Initial image IF, original label yF, pretrained
classifier fcl, classifier’s specified layer l, threshold ξ
spliting two parts of the image, visual explanation al-
gorithm ScoreCAM

1: function IDENTIFY-FG(IF, yF, l, ξ)
2: U = ScoreCAM(IF, yF, fcl, l) ▷ Extract the

attention map
3: M = U[ui,j > ξ] ▷ Get the binary mask
4: M′ = downsample(M) ▷ Get the latent mask
5: returnM′

6: end function

Algorithm 2 Preserving background during image synthe-
sis
Require: Initial image IF, latent mask M′, V AE =

(E(·),D(·)), noise coefficient α0, distance loss Ldis,
number of update iterations N , optimization algorithm
Adam

1: function PRESERVE-BG(IF,M′)
2: zF = zbg = E(IF) ▷ Init latents
3: for i = 1, . . . , N do
4: ϵ ∼ N (0, I)
5: zinit ← zF ⊙M′ + zbg ⊙ (1−M′) ▷ Blend

latents
6: z0 ←

√
α0z

init +
√
1− α0ϵ ▷ Add noise

7: I ′ ← D(z0)
8: grad1 ← ∇zbgLdis(I ′, IF,M′)
9: grad2 ← ∇θDLdis(I ′, IF,M′)

10: zbg ← Adam(zbg, grad1) ▷ Update
11: θD ← Adam(θD, grad2) ▷ Update
12: end for
13: return zbg*, θ∗D
14: end function

B.2. Implementation Details

In this work, we implement the blended latent diffu-
sion algorithm proposed in [1]. To reiterate, this algorithm
blends latent representations at each timestep t, defined as

Algorithm 3 Generating counterfactual explanation

Require: Initial image IF, target label yCF, latent
mask M′, original latent zF, optimal back-
ground latent zbg*, Latent Diffusion model
SD = {(E(·),D∗(·)), DiffusionModel =
(noise(z, t), denoise(z,C, t))}, text encoder CLIP,
sequence of noise coefficients {αt}T1

t=0, diffusion steps
τ , classifier fcl, Cross-Entropy loss LCE , number of
update iterations T2, optimization algorithm Adam

1: function GENERATE-CE(IF, yCF,M′, zbg*)
2: CCF = CLIP (yCF)
3: zinit ← zF ⊙M′ + zbg* ⊙ (1−M′)
4: ▷ Attack iteration steps
5: for t2 = 0, . . . , T2 do
6: ▷ Blended latent diffusion algorithm
7: zτ ∼ noise(zinit, τ)
8: for t = τ, . . . , 0 do
9: zfg ∼ denoise(zt,C

CF, t)

10: zbg*
t ∼ noise(zbg*, t)

11: zt ← zfg ⊙M′ + zbg*
t ⊙ (1−M′)

12: end for
13: I(t2) ← D∗(z0)
14: grad← ∇zinitLCE

(
fcl

(
I(t2)

)
, yCF

)
15: zinit ← Adam(zinit, grad⊙M′) ▷ Update

with pruning-based attack
16: end for
17: ICF = I(T2) ▷ Counterfactual explanation
18: return ICF

19: end function

follows:

zbg
t =

√
ᾱtz

F +
√
1− ᾱtϵt, (9)

zfg
t ≈
√
αt−1ẑ0 + βt−1ϵθ(zt,C

CF) + σtϵt. (10)

According to the hyperparameter settings and configuration
of Stable Diffusion, {βd}T1

t=0 defines a linear noise schedul-
ing with β0 = 0.00085 and βT1

= 0.012 (αt = 1 if t < 0),
and ᾱt =

∏t
s=0 αs. The representations and coefficients in

Equation 9 are: ϵt ∼ N (0, I), ẑ0 = zt−
√
1−ᾱtϵθ(zt,C

CF)√
ᾱt

,

βt =
√

1− αt−1 − σ2
t , σt =

√
1−αt−1

1−αt

√
1− αt

αt−1
.

To represent the target classes, these conditions are
mapped to CLIP-style text prompts [8], as follows:

• ImageNet: A photo of a/an {category}.
(attribute ∈ {cougar, cheetah, sorrel, zebra, Per-
sian cat, Egyptian cat}).

• CelebA-HQ: A photo of a/an {attribute}
face. (attribute ∈ {smiling, non smiling,
young, old}).



Figure 1. The visualization of the latent space.

For CelebA-HQ dataset, we fine-tuned the Stable Diffusion
model to align the generated images with the desired con-
ditions. Additionally, the purpose of this optimization is
to generate a set of images that closely resemble the data
distribution, thereby improving the FID score. Specifically,
we optimized the weights of the UNet [9] to minimize the
following loss:

LLDM = EE(x),ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt,C, t)∥22

]
. (11)

We utilized the AdamW optimizer [7] with betas =
(0.9, 0.999) and a learning rate of 10−4.

B.3. Blending Approach in Latent Diffusion

We provide examples in Figure 1. The channels of the
latent variable capture high-level features of the original
image. Therefore, Avrahami et al.’s approach [1] effec-
tively separated the latent subspaces of background and
foreground using a latent mask rescaled from the original
binary mask. Combined with the optimal latent zbg*, the
details in the counterfactual image are likely to tightly align
the context. This is primarily because Stable Diffusion inte-
grated two attention mechanisms into the UNet model dur-
ing the denoising process. Specifically, self-attention high-
lights the importance of latent features relative to the query
feature, while cross-attention indicates the significance of
positions on the generated image with respect to the con-
tent of the text prompt. These issues have been discussed in
related works [3, 6].

B.4. Preservation Strategy

Based on the blending strategy mentioned in Algo-
rithm 3, we observed that the latent variable zt retains a
small amount of noise in the subspace related to the back-
ground at timestep t = 0, corresponding to the noise coef-
ficient β0 = 0.00085. This is why we simulate the noise
addition process before decoding the latent z0 back to the
pixel space in the second phase. In the experimental section,
we verified the effectiveness of this approach by calculating
the pixel-wise difference in the background region between
the reconstructed image and the original image. Formally,

we calculate the loss as follows:

Lbg =
1

|B|
∑

(i,j)∈B

MSE(D(z0)i,j , IF
i,j), (12)

where MSE denotes the Mean Squared Error, and B repre-
sents the locations of the pixels in the background. We con-
ducted experiments and computed the average difference
over 100 random samples, and then obtained the confidence
interval based on the normal distribution.

B.5. More qualitative results

We provide counterfactual explanations, presented in
Figure 2 and 3. Additionally, we examine the diversity in
generating CEs by ECED by setting different thresholds ξ,
as shown in Figure 4.

C. Evaluation Protocols for Counterfactual
Explanations

Visual counterfactual explanations are evaluated based
on three key criteria: Closeness/Sparsity, Validity, and Re-
alism.

C.1. Sparsity

Euclidean distance matches the p-th order discrepancy
of pixel values at each corresponding position between the
original image IF and the counterfactual image ICF:

Lp =
1

N

N∑
i=1

∥di∥p (13)

=
1

N

N∑
i=1

(

C∑
c=1

H1∑
h=1

W1∑
w=1

|IF
i,c,h,w − ICF

i,c,h,w|p)
1
p , (14)

where N is the number of images, and C,H1,W1 are the
number of channels, height, and width of the images, re-
spectively, with p > 0.

SimSiam Similarity measures the cosine similarity be-
tween the counterfactual image ICF and the corresponding
original image IF in the feature space extracted by the self-
supervised SimSiam model [2].

S3(ICF, IF) =
S(ICF) · S(IF)

∥S(ICF)∥∥S(IF)∥
. (15)

Correlation Difference (CD) and Mean Number of At-
tribute Changes (MNAC) measure the average number of
attributes modified in the counterfactual explanation, where
MNAC addresses the limitations of CD.

MNAC =
1

N

N∑
i=1

∑
a∈A

[
I
(
I
(
Oa(ICF

i ) > β
)
̸= I

(
Oa(IFi ) > β

))]
,

(16)



Figure 2. Qualitative results for ‘Smile’ attribute with VGG-16. Left to right: original image, counterfactual image generated by ECED.

CDq =
1

N

N∑
i=1

∑
a∈A
|cq,a(ICF

i )− cq,a(IFi )|. (17)

Counterfactual Transition (COUT) [5] measures the
sparsity of changes in counterfactual explanations. It quan-
tifies the impact of perturbations applied to the factual im-
age IF by using a normalized mask m = δ(||xF − xCF ||1)
that represents the relative change compared to the coun-
terfactual image, where δ normalizes the absolute values to
the range [0, 1]. The computation of COUT is performed in-
crementally by gradually inserting the highest-ranked pixel
groups from ICF based on these sorted mask values.

At each step of adding pixel groups t ∈ {0, . . . , T}, the
measure calculates the probability fcl(·) for the original la-
bel and the desired label, yF and yCF, through the transition
from x0 = IF to xT = ICF. From this, the COUT score is
defined as:

COUT = AUPC(yCF)− AUPC(yF) ∈ [−1, 1]. (18)

The perturbation area under the curve for each label y ∈
yF, yCF is calculated as follows:

AUPC(y) =
1

T

T−1∑
t=0

1

2
(fcl (xt, y) + fcl (xt+1, y)) (19)

AUPC(y) ∈ [0, 1]. (20)



Figure 3. Qualitative results for ‘Age’ attribute with VGG-16. Left to right: original image, counterfactual image generated by ECED.

Figure 4. The example of diversity in generating counterfactual
explanations by ECED.

C.2. Validity

Flip Ratio (FR) measure is commonly used to assess the
authenticity of counterfactual outcomes for the desired la-
bel. This criterion focuses on evaluating the validity of
N counterfactual explanations by measuring the extent to

which the original label yF
i of the i-th original image IF,i

shifts the classification model’s prediction to the counter-
factual target class yCF

i for the counterfactual image ICF,i.

FR =

N∑
i=1

I
(
fcl(ICF,i) = yCF

i

)
N

, (21)

where I is the indicator function.

C.3. Realism

Fréchet Inception Distance (FID) assesses the realism of
generated images by measuring the FID distance between
the distributions of features (extracted via the InceptionV3
network [10]) in the original dataset and the counterfactual
image set:

FID = ∥µF − µCF ∥22 + Tr(ΣF +ΣCF − 2
√

ΣFΣCF ),
(22)



where µF , µCF represent the mean vectors, and ΣF ,ΣCF

represent the covariance matrices derived from the feature
distributions of the InceptionV3 model for the real and
counterfactual image sets, respectively. However, due to the
nature of this type of explanation, which creates very subtle
changes (differing only at a few pixels), this introduces sig-
nificant bias. To address this issue, [4] proposed a solution
by splitting the dataset to compute FID, termed sFID. The
basic idea is to split both the real and counterfactual image
sets into two subsets, then compute the FID value across the
cross subsets (i.e., real image subsets not paired with their
respective real counterparts). Finally, the average of the two
FID values is taken to obtain the sFID value.
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