Towards Accurate Unified Anomaly Segmentation
(Supplementary Material)

This Supplementary Material contains the following
parts: 1) Additional information details about sample-aware
reweighting mechanisms and hyper-parameter settings in
Appendix A; 2) Additional experiments, ablation studies,
and visualization results in Appendix B.

A. Implementation Details

A.1. Sample-Aware Reweighting Mechanism

____________________________________________________________

Avg

Highest

Feature (D Pixel-wise
3
I
’w p Spatial

weight f‘
] = Cad

{Randomly Initialized Query Embedding

Figure 1. The illustration of the Sample-Aware Reweighting
(SAR) Mechanism. Channel-wise attention and spatial-wise at-
tention are computed based on the highest feature, which serves as
the weights to reweight the randomly initialized query.

For One-for-All anomaly segmentation, a learnable
query can be included to serve as the memory matrix, allow-
ing for flexible memorization of class-agnostic semantics
[4,8]. However, features extracted from different samples,
particularly those from distinct categories, often exhibit sig-
nificant disparities in high-level characteristics. Employ-
ing a shared learnable query to memorize patterns across
all categories can be suboptimal due to this variability. To
address this issue, [4] introduces a Switching Mechanism
with various codebooks and experts, although this approach
is memory-consuming.

Instead, we take advantage of this variability in various
features, incorporating a simple Sample-Aware Reweight-
ing (SAR) Mechanism to initialize more sample-specific ac-
curate prototypes as queries, as illustrated in Fig. 1. Specif-
ically, the query q3"* € RHxxWxxC" is randomly initial-

ized, whose shape is the same as the highest patch em-
bedding hx. We utilize channel weights W and spatial
weights W in CBAM [7] to reweight query g based on
h i with the richest semantic, as shown in Eq. (1).

W. = o(MLP(AvgP, (hg) + MaxP;s(hg)))

W, = o(Conv(cat(AvgP, (hg); MaxP.(hk)))), )

where o(-) is the activation function, AvgP,(-),MaxP,(-)
mean spatial-wise average-pooling and max-pooling, and
AvgP_(-),MaxP.(-) are channel-wise poolings.

The weights W, W are channel-wisely and spatial-
wisely multiplied to qg"?, resulting in gqg € RZx>*WixC"
which is the query of the first transformer layer.

A.2. Hyper-parameter Settings

The shapes of the four levels of features are 112 x 112 x
24, 56 x 56 x 32, 28 x 28 x 56 and 14 x 14 x 160, re-
spectively. For the Gaussian filter, the kernel size is 3 and
sigma equals 1. The patch size for each level is 8,4,2 and 1
accordingly. Inspired by [2], we combine two transformer
components together in a transformer layer: a conventional
spatial-wise transformer [6] and a channel-wise transformer
that performs attention operations on channels after trans-
posing the input. This dual design enables the model to
simultaneously consider spatial-wise context and channel-
wise semantics, enhancing the model’s performance and ro-
bustness in dealing with intricate scenarios across multiple
datasets. For both spatial- and channel-wise attention, the
number of heads is 4, and the dimension of the feed-forward
network is 2048. All the channel sizes in the convolution
layers in MGG-CNN module are set to 256.

During evaluation, the threshold for segmentation is cho-
sen based on the PR curve of each class to maximize the
sum of precision and recall, and DSC is calculated sample-
wisely. DSC for normal samples (GT = 0) is calculated
based on the following rules: 1) if each pixel in the pre-
dicted segmentation mask equals 0, then the DSC for this
image is 1; 2) if any pixel in the segmentation mask is
wrongly predicted, then the DSC for this image is 0.



‘ Boundary ‘ Img Recon. ‘ Feature Recon.

Category AR(%) | PatehCore [5] | DRAEM [9] | DeSTSeg [10] RD4AD[1] | UniAD [8] HVQ-Trans [] UniAS(O

CVPR2022 | ICCV2021 | CVPR2023 CVPR2022 | NIPS2022  NIPS2023 niAS(Ours)
Candle 081 | 13217027 | 1402027 | 32.08/027  19.80/0.00 | 20.77/034  19.47/5.38 19.09/ 0.36
Capsules 163 | 61.28/51.78 | 19.40/0.77 | 22.47/0.84  39.01/0.00 | 49.22/4571  4598/37.79  49.23/46.43
Cashew 506 | S5481/3827 | 1.38/1.84 | 51.89/47.04 3730001 | 4291/8.02  59.50/36.01  52.43/38.64
Chewing Gum | 2.54 | 45.53/51.74 | 43.68/45.78 | 61.59/73.50  62.09/32.22 | 57.97/61.22  47.70/55.71  62.79/54.32
Fryum 1037 | 33.61/592 | 34.03/4.05 | 30.57/3.99  51.46/0.07 | 46.87/21.02  50.16/28.70  47.52/71.82
Macaronil 022 | 1.06/50.01 | 14.82/0.07 | 0.62/5024  22.10/0.05 | 9.62/0.03  7.29/50.74  14.73/50.78
Macaroni2 0.17 | 003/001 | 10425056 | 6.01/0.06  13.80/0.00 | 3.77/0.15  3.07/0.14 0.17/0.07
Pcbl 279 | 7531/58.44 | 29.26/50.43 | 39.00/0.88  74.84/46.63 | 70.01/56.81  59.98/55.57  79.19/58.58
Pcb2 124 | 18.09/0.05 | 7.76/041 | 11.77/053  18.93/0.00 | 9.67/1.03  7.84/0.88 11.95/0.69
Pcb3 152 | 30.35/50.38 | 19.26/50.54 | 26.16/50.67  26.43/0.50 | 2127/1.59  18.59/1.64  23.58/3.98
Pcbé 396 | 36.17/149 | 1751/132 | 43.52/129  3336/040 | 29.72/4.10  1430/647  44.47/32.68
Pipe Fryum 562 | 58.23/44.57 | 27.78/2.14 | 74.52/52.48  59.70/20.74 | 50.04/26.89  64.17/4628  75.67/51.23
Mean | 300 | 35.64/28.15 | 3449/17.35 | 333502348  3823/8.34 | 3432/1893 33172671  40.06/32.50

Table 1. Quantitative Results on VisA in pAP/DSC(%). The best results are colored red, and the second best results are underlined.

‘ Mem. Bank ‘ Img Recon. ‘

Feature Recon.

Category | AR(%) | pychCore [5] | DRAEM [9] | DeSTSeg [10] RD4AD[1] | UniAD [8] HVQ-Trans [4] UniAS(O
CVPR2022 | ICCV2021 | CVPR2023  CVPR2022 | NIPS2022 NIPS2023 niAS(Ours)
Bottle 2282 | 79.17/7842 | 5132/ 1.04 | 72.93/65.14  68.07/47.39 | 69.34/67.72  72.02/65.86  84.35/79.50
Cable 1404 | 501.12/51.36 | 9.53/535 | 47.50/4635  25.68/5.42 | 48.38/27.60  50.64/31.09  78.31/73.90
Capsule 332 | 4426/43.41 | 7.15/1.76 | 45.88/2025  20.19/21.26 | 45.75/34.19  44.63/19.43  49.64/44.72
Hazelnut | 10.06 | 60.12/63.23 | 71.82/44.48 | 65.71/57.62  63.56/52.25 | 54.35/25.84  64.21/62.40  79.17/76.80
Metal Nut | 43.46 | 88.62/74.35 | 24.53/1695 | 53.61/23.02  64.32/38.50 | 49.83/41.30  67.30/48.18  70.25/76.61
Pill 11.93 | 77.37/51.25 | 63.42/23.58 | 78.03/35.95  78.11/53.18 | 40.28/23.66  49.98/29.24  66.98/47.87
Screw 101 | 3673000 | 41.49/0.05 | 1939/0.50  43.89/35.67 | 26.08/3.65  29.17/3.57  48.00/46.54
Toothbrush | 640 | 54.03/58.46 | 52.60/34.09 | 58.06/43.04  55.51/53.96 | 40.09/42.81  39.80/45.56  59.41/55.42
Transistor | 3595 | 66.61/22.40 | 27.22/7.07 | 39.26/59.02  42.38/8.05 | 67.57/2887  72.34/1935  84.13/70.13
Zipper 787 | 53.50/53.79 | 73.61/57.93 | 61.42/4922  57.36/63.26 | 33.60/21.99  37.79/32.14  57.36/55.61
Carpet 632 | 6931/63.12 | 69.97/52.34 | 66.82/52.52  57.49/48.81 | 52.81/49.74  54.19/47.49  70.20/63.70
Grid 283 | 37.85/40.45 | 3849/17.50 | 36.02/136  48.56/43.69 | 24.16/3.80  24.09/398  43.00/26.52
Leather 262 | 50.97/51.03 | 58.99/48.18 | 79.37/7538  40.98/45.44 | 34.43/4136  34.47/2856  58.65/58.40
Tile 2041 | 59.78/70.21 | 79.90/45.77 | 89.56/60.65  51.30/40.51 | 42.67/30.69  41.99/35.41  59.80/54.37
Wood 1525 | 51.17/39.70 | 77.79/62.81 | 74.57/63.70  53.69/38.53 | 37.02/1523  39.65/17.23  53.66/60.03
Mean | 1317 | 55.73/50.74 | 49.86/27.93 | 59.20/43.61  51.41/39.73 | 44.42/30.56  48.15/32.63  65.12/59.33

Table 2. Quantitative Results on MVTec-AD in pAP/DSC(%). Methods are divided into Memory Bank-based, Image Reconstruction-
based, and Feature Reconstruction-based categories. One-for-one methods are trained within the one-for-all scheme. Objects with logical
and textural anomalies are separated. The best results are colored red, and the second best results are underlined.

B. More Experiments
B.1. Results per Class

We provide the the results of each class in our exper-
iment on MVTec-AD (see Tab. 2) and VisA (see Tab. 1),
comparing with exisiting SOTA models. We also present
AR to reference the degree of imbalance in the dataset.

B.2. Ablations

We provide ablation results in pAP, DSC, and AUROC
in this section, see Tab. 3 for Structural Component Study
and Tab. 4 for Feature Combination Study.

We also provide additional ablation results of feature fil-
tering. Although the effectiveness of aggregating neighbor
information has been validated by previous works, we an-
alyze the importance of our Gaussian filter in our settings,



Components ‘ Results
Multi-level ‘ SAR Q. ‘ Hybrid Structure ‘ Filtering ‘ Metric
\ |Conv3 MG-CNN MGG-CNN | Avg. Gau. Concat|  pAP DSC AUROC
- - - - - v v’ 140.14(24.98) 25.24(34.09) 96.35(1.87)
v - - - - v v 56.47(8.65) 39.06 (20.27) 96.95( 1.27)
v v - - - v v 59.84(5.78) 48.35(10.98) 97.66( 0.56)
v v v - - v v 61.14( 1.73) 49.27(10.06) 97.64( 0.58)
v v - v - v v 63.39( 1.13) 51.56(7.77) 98.09( 0.13)
v v - - v - - 62.43(2.69) 52.70(6.63) 96.98( 1.24)
v v - - v - - 62.79(2.33) 51.77(7.56) 98.03(0.19)
v v - - v v - 63.00( 2.12) 54.26(5.07) 98.06( 0.16)
v v - - v v 65.12 59.33 98.22

Table 3. Structural Component Study The performance gap from the default setting is shown in red.

#Levels ‘ Levels ‘ Metric
| |  pAP DSC AUROC
{4} | 4444(20.68) 36.88(22.45) 94.83(3.39)
| {3} 53.49(11.63) 38.22(21.11)  96.37(1.85)
{2} 56.52(8.60)  37.47(21.86)  96.16( 2.06)
{1} ] 40.18(24.94) 21.11(3822) 89.30(8.92)
) {43} | 54.2010.92) 45.55(13.78) 96.85( 1.37)
{41} | 58.63(6.49) 45.63(13.70) 97.45(0.77)
3| {432} | 61.57(355) 55.03(4.30) 97.85(0.37)
4 | {4321} | 6512 59.33 98.22

Table 4. Feature Combination Study The performance gap from
the default setting is in (red). Feature levels are labeled 1,2,3,4
from lowest to highest level accordingly. {-} means the levels
included.

shown in Tab. 3. Average filters (Avg. column in Tab. 3)
are used in previous works [3, 5], which are proved to be
too smooth to reserve necessary structural information com-
pared to the Gaussian filter we use (Gau. column in Tab. 3)
, according to the last four lines. Moreover, concatenat-
ing (Concat column in Tab. 3) the residual together with fil-
tered features improves segmentation performance signif-
icantly, showing that incorporating details is beneficial to
fine-grained localization (see last two lines).

B.3. Visualization

B.3.1 Multi-level Reconstruction

We visualize more examples of UniAS’s prediction on ev-
ery level in Fig. 3, labeled 4 to 1 from the highest to the
lowest. These visualization result further consolidates that
anomaly maps in different levels play complementary roles,
detecting anomalous pixels from course to fine. Higher-
level features concentrate on semantics, facilitating accu-
rate overall anomaly localization, while lower-level fea-
tures have rich textural information aiding in delineating the
shape of the anomalous region.
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Figure 2. Examples of failed cases of our UniAS. Our model can
make false predictions under noisy and complicated scenarios.

B.3.2 Failure Cases

We show some failed cases of UniAS in Fig. 2. As one
can see, when the anomalous region is vague while there
is obvious background noise (seen in the first two lines),
our model can possibly recognize the background noise as
anomaly with greater salience than the real anomaly in the
foreground. Additionally, there are some noisy labels in the
datatset as well (seen in the third line). This leads to false
positive predictions, implying our UniAS still needs further
improvement, especially under intricate and confusing sit-
uations. However, anomaly segmentation with noise is a
slightly different task, which is not the topic of our work.
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Figure 3. Additional visualization of the anomaly maps in each level and final predictions. UniAS leverages the benefits of multi-level
reconstruction and achieves meaningful segmentation of anomaly.

References

(1]

(2]

(3]

(4]

(5]

Hangiu Deng and Xingyu Li. Anomaly detection via reverse
distillation from one-class embedding. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9737-9746, 2022. 2

Mingyu Ding, Bin Xiao, Noel Codella, Ping Luo, Jingdong
Wang, and Lu Yuan. Davit: Dual attention vision transform-
ers. In European Conference on Computer Vision, pages 74—
92. Springer, 2022. 1

Zhikang Liu, Yiming Zhou, Yuansheng Xu, and Zilei Wang.
Simplenet: A simple network for image anomaly detection
and localization. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
20402-20411, 2023. 3

Ruiying Lu, YulJie Wu, Long Tian, Dongsheng Wang, Bo
Chen, Xiyang Liu, and Ruimin Hu. Hierarchical vector
quantized transformer for multi-class unsupervised anomaly
detection. arXiv preprint arXiv:2310.14228,2023. 1,2
Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard
Scholkopf, Thomas Brox, and Peter Gehler. Towards to-
tal recall in industrial anomaly detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14318-14328, 2022. 2, 3

(6]

(7]

(8]

(9]

[10]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, F.ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon. Cbam: Convolutional block attention module. In
Proceedings of the European conference on computer vision
(ECCV), pages 3-19, 2018. 1

Zhiyuan You, Lei Cui, Yujun Shen, Kai Yang, Xin Lu,
Yu Zheng, and Xinyi Le. A unified model for multi-class
anomaly detection. Advances in Neural Information Pro-
cessing Systems, 35:4571-4584,2022. 1,2

Vitjan Zavrtanik, Matej Kristan, and Danijel Skocaj. Draem-
a discriminatively trained reconstruction embedding for sur-
face anomaly detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 8330—
8339, 2021. 2

Xuan Zhang, Shiyu Li, Xi Li, Ping Huang, Jiulong Shan,
and Ting Chen. Destseg: Segmentation guided denoising
student-teacher for anomaly detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3914-3923, 2023. 2



	. Implementation Details
	. Sample-Aware Reweighting Mechanism
	. Hyper-parameter Settings

	. More Experiments
	. Results per Class
	. Ablations
	. Visualization
	Multi-level Reconstruction
	Failure Cases



